

The New User's Guide to EDITOR and RUNOFF

Published by Prime Computer, Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701
Copyright c 1978, 1979 and 1980
by Prime Computer, Inc.
Printed in USA All rights reserved
The information contained in this document is subject
to change without notice and should not be construed
as a commitment by Prime Computer Incorporated
Prime Computer assumes no responsibility for any
errors that may appear in this document.
First printing, June 1978
Second printing, revisions, February 1980

Production information:This book was composed in 10
and 11 point Melior by Allied Systems.The covers were
printed in 6 colors by MacDonald & Evanswith
separations by Spectrum.The cover stock was 100*
Warren LOE Gloss Cover. The text was printed in 6
colors by Federated Lithographers. The text stock was
50# Mohawk Vellum, Creme white. Layout and design
was by William Agushof Prime Computer. The
illustrations were by Lee Lorenz.

The New User's
Guide to

r EDITOR and RUNOFF
hy Daniel P. Dern

With revisions and enhancements by
JacM Forbes and Peter Neilson

Illustrations by Lee Lorenz

C

INTRODUCTION

Purpose: A Textbook for New Users 1-1
Organization 1-1

Terminals and Computers 1-2
The Computer 1-2

Computerese - Some Basic Terms 1-3
Conventions Used In This Manual 1-6

Terminals 1-8
Your Terminal Keyboard 1-8

2
USING PRIl

What is PRIMOS? 2-1
User File Directory Names 2-1

How to Correct Typing Errors 2-1
Hitting the Carriage-Return Key 2-2

Getting Ready to Log in 2-2
Connecting the Terminal with the Computer 2-2

Logging In 2-3
Problems in Logging In 2-4

Other Reasons You Can't Log In 2-4
Finding Out What's in Your UFD 2-5

Logging Out 2-6
Notes on Logging Out 2-7

3
THE ESSENTIALS OF EDITOR

Editing 3-1
What EDITOR Is 3-1

Conventions in EDITOR 3-2
How EDITOR Works 3-3

Input and Edit Modes 3-3
Entering EDITOR 3-3

Entering Text in Input Mode 3-4
Switching from Input to Edit Mode 3-5

How EDITOR Works on its File 3-5
Giving Commands in Edit Mode 3-6

Switching from Edit to Input Mode 3-6
Basic EDITOR Commands 3-7
EDITOR'S Error Messages 3-7

The PRINT Command 3-8
The WHERE Command 3-9

Pointer-Moving Commands 3-9

String-Finding Commands 3-11
Line-Changing Commands 3-12
Ending an EDITOR Session 3-15
Miscellaneous Information 3-18

General Information 3-18
EDITOR'S Other Commands 3-18

What's Next 3-20

4
MORE PRIMOS

More PRIMOS Commands 4-1
Using Other UFDs-The ATTACH Command 4-1

Making Sub-UFDs Using the CREATE Command 4 - 3
Using the SLIST and SPOOL Commands 4-5

Renaming and Deleting Files and Sub-UFDs 4-8The DATE Command 4-8
The CLOSE Command 4-8

Copying Files with FUTIL 4- 9
The TERM Command 4- 9

5
THE ESSENTIALS OF RUNOFF

Introduction 5-1
Creating the Source File 5-2RUNOFF Commands 5-2

Page-Formatting Commands 5-4
Line-Formatting Commands 5-6

Blank Lines and Paragraph Spacing Commands 5-9
Output Commands The TTY Command 5-11

Running RUNOFF 5-14
RUNOFF Command Errors 5-16
The Processed Output File 5-17

6
MORE RUNOFF
Introduction 6-1

Page-Formatting Commands 6-1
Output Options 6-4

Blocks of Text, Artwork and Inserted Files 6-6
Special Characters, Symbols and Conventions 6-7

Indexing 6-11

"The purpose of this user guide ..."

The purpose of this user guide:
We have endeavoured to provide
Clear explanations, amplified

By ample demonstrations.

Which show how easily you may
Use Prime computers every day
To help in each and every way

With office occupations.

You'll edit and runoff reports
And then learn how to do all sorts
Of letters, files, and later thoughts

Of alphabetizations.

This information is all here:
It's organized and very clear.
For further questions, check the rear

Just read the ref rence sections.

You never more need be afraid
For in this book we have displayed
Computers as your friend and aid

Goodbye to trepidations.

*To be sung to the tune of
"How Beautifully Blue The Sky",
from The Pirates of Penzance
by W. S. Gilbert and A. Sullivan

RUNOFF DECIMALIZATION

What is Decimalization? 7-1
Using RUNOFF to do Decimalization 7-2

Format Parameters 7-4
Levels 7-4

Format Commands 7-7
Ways to Generate Decimal Labels 7-8

Level-Resetting Commands 7-8
Generating Unlabeled Headings and Paragraphs 7-9

Miscellaneous Information 7-10
Generating a Table of Contents 7-11

RUNOFF Decimalization Command Summary 7-13

8
SAMPLE

Introduction 8-1
Document Formatting 8-1

How To Do Hanging Indents 8-2
Inserting Addresses on Form Letters 8-7

Asterisk Constructions 8-10
The GMODIFY Command 8-12

The MOVE and XEQ Commands 8-15

9
THE EDITOR REFERENCE SECTION

Explanation of the Command Format 9-1
The Commands 9-1

10
THE RUNOFF REFERENCE SECTION

Explanation of the Command Format 10-1
RUNOFF Commands 10-1

Introduction
PURPOSE: A TEXTBOOK FOR NEW USERS
You do not need to know anything about computers to read and use this manual.
The NEW USER'S GUIDE TO EDITOR AND RUNOFF has been written for the new
computer user who may not have had any prior experience in working with computers or
text-processing systems. This book tells you exactly what you need to know to immediately
begin using EDITOR and RUNOFF on your computer.
EDITOR is a text-editing system. Using EDITOR, you can type text into the computer, edit it,
and save it for later use.
RUNOFF is a formatting system for printed text. With a few RUNOFF commands, you can
turn your typed input into pages which are neatly arranged in whatever manner you choose.

ORGANIZATION
The contents of this

Section 1:

Section 2:

Section 3:

Section 4:

Section 5:

Section 6:

Section 7:

Section 8:

manual are:
INTRODUCTION (this section). Gives you general informa
tion about computers, terminals, and the various conventions
used in this manual.
USING PRIMOS. Gives you basic information about how to
use a Prime Computer.
THE ESSENTIALS OF EDITOR. Introduces you to EDITOR,
and teaches you enough about EDITOR to do most jobs.
MORE PRIMOS. Provides additional information about
Prime computers, which you will not need until after you
have been using EDITOR.
THE ESSENTIALS OF RUNOFF. Teaches you enough about
RUNOFF so that you can use it for a number of standard
tasks.
MORE RUNOFF. Explains how to do slightly more com
plicated or non-standard work using RUNOFF.
RUNOFF DECIMALIZATION. Shows how to do decimalized
headers and tables of contents.
SAMPLE SESSIONS. Demonstrates common tasks for EDI
TOR and RUNOFF, plus some advanced techniques.

FDR 3104 1-1 1 March 1980

1 INTRODUCTION

Section 9: EDITOR REFERENCE SECTION. Contains full information
on all the EDITOR commands, in alphabetical order.

Section 10: RUNOFF REFERENCE SECTION. Contains full information
on all the RUNOFF commands, in alphabetical order.

We've arranged the material so you can log in to the computer and begin working almost
immediately. The further you read, the more you'll be able to do.
Once you've become familiar with the computer and have had some practice using EDITOR
and RUNOFF, you should have little trouble learning to use the more advanced techniques
and more powerful commands. Then, when you are an experienced user, you can keep the
command summaries by your terminal, and turn to the reference sections whenever specific
questions arise.

TERMINALS AND COMPUTERS
It is unlikely that you are near your Prime computer at the moment. The computer is in the
computer room, sitting in its cabinet, alongside a couple of disk drives, tape transports, line
printers, terminals, and so on, all under the watchful eye of a computer operator or two. All
you need to "talk" with the computer is your terminal (and maybe a telephone coupler).
Prime computers can be connected to as many as 63 working terminals at the same time.
Your terminal may be connected directly to the computer by a length of wire, or over the
telephone, using a device called an acoustical coupler. This device translates the computer's
and terminal's interaction into signals which can be sent through a phone line.

THE COMPUTER
Although computers are complicated machines, you don't need to understand how they
work in order to use them. The important thing to remember about a computer is that it is
a machine. Like any other machine, it does not think; it merely follows orders and does
exactly what you tell it to do. This means you must tell the computer precisely what you
want. If you type a command containing an error that can still be understood, it will follow
the command the way you typed it, regardless of what you might have meant. Computers do
exactly what you want them to do if you explain what you want in words the computer can
understand. Since the computer follows your orders precisely, you want to avoid making
mistakes. (You do have a chance to correct typing errors, and even retype entire lines before
the computer acts on them. This will be explained later.)
You identify yourself to the computer by giving a piece of information called a user-name
Many people may know a particular user-name; some people will know several different
user-names. With some of these user-names you will have to give a password; this prevents
unauthorized people from using these names.
The computer checks everything you tell it to make sure you have given it reasonable
instructions (commands) — so far as it can tell. It recognizes each correct command, in terms
of spelling and permissible abbreviations. If for some reason the computer is not happy with
what you have told it, it will display an error message on your terminal, explaining its
interpretation of your mistake.
Remember: The computer cannot determine whether what you said is what you meant to
say. Always keep in mind:

• Computers have no common sense. No matter how strange your request
may be, if the computer can do it, it will.

• Computers are always consistent. If the circumstances are the same, the
computer will always react in exactly the same way to the same command
(or command error).

1 M a r c h 1 9 8 0 1 - 2 F D R 3 1 0 4

INTRODUCTION 1

r

~*r^

Computers have no common sense
r

• Nothing breaks when you make mistakes. Computers are built to be used
by people. And people are known for making mistakes. It is possible to
scramble your own files; however it is difficult to do something that cannot
be undone, and with the file access you have, it is next-to-impossible to do
anything at your terminal that will actually harm the computer.

With a little practice, you'll be able to analyze what it is that you want to do. and then
determine how to make the computer do it. This manual explains how.

COMPUTERESE — Some basic terms
As in every other field, there are many terms which have specialized meanings when talking
with, or about, computers. Below is a partial glossary with brief definitions. Fuller
explanations will appear throughout the text as necessary. Additional terms will crop up
throughout the manual. New terms will be printed in rust, and will be explained as
necessary.

FDR 3104 1-3 1 March 1980

INTRODUCTION

Terminal: Something looking very much like a typewriter with extra keys, through which
you can communicate with the computer.
Session: The period of time spent at the terminal between login and logout.
Login: Connecting yourself, at the terminal, with the computer.
Logout: Disconnecting yourself, at the terminal, from the computer.
Text string: A series of letters, numbers, and symbols (* ' < > etc., which have special
meaning to the computer), or any combination of letters, numbers and symbols. In this
manual we will frequently refer to a string, meaning the same thing as text string.
File: A series of text strings which are being preserved. All work done in a session is done
in a file, or in more than one file.
Dialog: The conversation between you and the computer.
Input: Your portion of the dialog — what you type at the terminal.
Data: Consists of numbers and text strings. Data is the actual information you have typed
which the computer processes, as directed by your commands.

Computers are always consistent

1 March 1980 1-4 FDR 3104

INTRODUCTION 1

r

v
Nothing breaks when you make a mistake

Command: A line of input which specifies what you want the computer to do. Commands
must be terminated by a RETURN. See Chapter 3.

Parameter: Input which defines the command, or tells the computer something about how
the command should be performed. Parameters are not always necessary. If a parameter is
enclosed in square brackets [) in this manual, the parameter is optional — you may want it,
but the command will operate by default if you do not use it. We'll explain more about
parameters later in this section.

Default: If you input a command without a parameter (an optional parameter), the computer
will process the data by default, which means according to its own rules for that command.
(However, if you omit a required parameter, you'll get an error message.) Defaults for each
command will be defined when each command is explained throughout this text.
Output: Dialog from the computer.
Requested information: Output that you asked to see.

FDR 3104 1-5 1 March 1980

INTRODUCTION

Reminders: Prompts, queries and verifications from the computer, to help you get every
thing the way you want it.
Messages: Output from the computer which may be error messages or could be messages
from your system's computer operator.
Error messages: Output from the computer telling you that you asked it to do something it
does not understand.
If the computer outputs a question mark (?), it means "That makes no sense" or "What do
I do with this?". If it outputs ER! (for error), it may also print an abbreviated explanation of
what it thinks you did wrong. Errors are usually caused by a typing mistake, or by your
forgetting exactly what it was that you were doing.

CONVENTIONS USED IN THIS MANUAL
Commands may contain command words, parameters, and keywords. Commands are given
in a general command format, as follows:

COMMAND parameter

Command words
The command word is given in upper case; however, you may input command words in any
combination of upper and lower case characters. You do not always have to type the entire
command word; the rust-colored letters are sufficient. (You may type any of the non-
required letters, in addition, e.g., for PRINT, you could say P, PR, PRI, prin. or PRint.)

Parameters
Commands often have parameters which are shown in lower-case letters. Parameters
specify something about how the command should be performed. For example:

PRINT n

means "PRINT n lines", where n is a number.
If a parameter is enclosed in brackets, [parameter| it is optional. For example, in the format
PRINT n, you could say PR5, PR-10 or PR (Note: these do not mean the same thing). If you
do not specify a parameter, the default value is used.
There are two types of parameters: numeric and text.
A numeric parameter is represented in a command format by a lower-case letter, usually
"n". Numeric parameters specify things like numbers of lines, times to do an operation. As
an aid, all parameters are shown in bold when they first appear in text, like this: "...nlines
from filename." The value of n can always be positive; often n can be zero or negative (the
permissible range of values is explained with each command).
If n is negative, the number must have a minus sign (-) immediately to its left; e.g., -12,
—5 with no intervening spaces.
In most cases, parameters have default values, which are used if you omit the parameter
from the input.
In the command format, when n is enclosed in parentheses immediately following a
command word, e.g., FIND(n) — both parentheses are required, with no space between the
command word (or abbreviation) and the left parenthesis. For example:

FIND(6)
F(2)
FIN(5)

1 M a r c h 1 9 8 0 1 - 6 F D R 3 1 0 4

INTRODUCTION 1

Some commands make no sense at all

A text parameter is one or more characters, sometimes including blanks, in a row. A text
parameter can either be:

• A filename which is the name of a file. e.g.. MEMO, DAVIDS-NOTES.
• A single character— the value of a character may be a letter, number, or

symbol.
• A string— a series of characters which has no command meaning to the

computer, but has meaning to the user like "PAGE 99" or "PLEASE
RETURN AT ONCE". A string that contains no characters is called a null
string.

FDR 3104 1-7 1 March 1980

1 INTRODUCTION

Keywords
Keywords are words shown in upper-case letters (other than the command word). They are
important in clarifying the use of the parameters. Keywords must always be used exactly as
they appear (however, you may enter them in either upper- or lower-case). In this manual
the most common keyword is TO.

Conventions in the examples
When examples have been taken from actual computer sessions, the user's input is shown
in rust and the computer's output is in dark brown.

TERMINALS
A terminal is a device that allows you to "talk" with the computer. It must have a keyboard,
something on which it can display output, and a connection to the computer.
It is important to remember that you do not always have to use the same terminal to work
on the computer. Any terminal that is connected to the compuer will do, provided it is the
proper kind for your purpose.

Types of terminals
There are two basic types of terminals — ones that type output onto paper, and ones that
display output on a TV screen.
Terminals that type onto paper are referred to as "hard-copy" terminals. These are useful
when you want to save a printed copy of your session, or type out a particular file.
Terminals with screens are called either video terminals or CRT (for Cathode Ray Tube)
terminals. Video terminals produce output faster than hard-copy terminals. They are also
useful when you are doing a lot of work for which the end result is important but not the in-
between stages. With a video terminal, you don't consume lots of paper which you would
only dispose of later.

YOUR TERMINAL KEYBOARD
The layout of the terminal keyboard can vary from one type of terminal to another.
Besides the usual letters, numbers and punctuation symbols, your terminal also has a variety
of special symbols and keys. The number and letter keys are arranged in the same positions
as on all standard typewriters. The punctuation marks may be located on different keys,
depending on the terminal model. Special keys fall into the following categories:

• Terminal controls and switches
o Special characters

Terminal controls and switches
Terminal controls and switches affect the special ways in which a terminal performs.
Depending on what model terminal you have, these may be switches on the front, side,
bottom or back of your terminal; they may be keys to the side of the keyboard. The controls
and switches that you need to know about are:

ON/OFF: This is the power switch. Terminals sometimes have an indicator light which
glows when the power is on. On some terminal models, this switch is located on the bottom
or at the rear.

1 M a r c h 1 9 8 0 1 - 8 F D R 3 1 0 4

INTRODUCTION

r

LINE/LOCAL: This switch controls whether or not the terminal is sending input to the
computer. In LINE mode, the terminal and the computer are connected; in LOCAL mode,
the terminal acts like a specialized typewriter. This switch is often labeled:

ON-LINE/OFFLINE
REMOTE/LOCAL
LINE (and an indicator light which is on in LINE mode and off in LOCAL mode)

If in doubt about which mode your terminal is in, press the RETURN key. If the terminal
advances to a new line, it is probably in LINE mode; if it simply returns to the beginning of
the same line it is in LOCAL mode.
HALF DUPLEX/FULL DUPLEX: This key or switch (sometimes called HALF/FULL or
DUPLEX/SIMPLEX) selects whether or not your terminal should "echo" each character on
the screen as you type it on the keyboard. Prime systems most often (but not always) use
FULL DUPLEX.
If every character you type appears twice, try switching to FULL DUPLEX; if not at all, try
HALF DUPLEX.
UPPER-CASE/LOWER-CASE: Unlike the SHIFT key. the UPPER-CASE/LOWER-CASE key
only affects the meanings of the letter keys. UPPER-CASE causes all letters to print in upper
case, no matter what the setting of the shift key is; LOWER-CASE lets you select between
upper and lower-case in the standard manner (by using the shift key). On some terminals,
this switch is located on the bottom instead of on the keyboard. This key is often labeled:

CASE
UPPER/LOWER
UC (for upper-case - when on)

Certain terminals do not have this switch at all, and produce only upper-case letters.
The CONTROL key: The key labeled CONTROL (or CTRL) indicates control characters
when pressed at the same time as a character key. Control characters have meanings to the
computer which are quite different from the character's normal meaning.

Special Characters
Up-arrow: The character indicated as an up-arrow (t) or a caret (") is called up-arrow. The
arrow has certain specific uses in the EDITOR and RUNOFF.
The backslash: The Backslash symbol \ has a specialized meaning in EDITOR—the default
TAB character.
RUBOUT: The key labeled RUBOUT or DEL has a special use in RUNOFF. This key has no
effect anywhere else in your Prime computer.
If you have difficulty getting your terminal to work, ask for help.

F D R 3 3 0 4 1 - 9 1 M a r c h 1 9 B 0

Using
PRIMOS

WHAT IS PRIMOS?
PRIMOS is the operating system of your Prime computer.
PRIMOS's chores include:

• Keeping track of who's allowed to use the system.
• Keeping track of who's doing what on the computer at any given time, from

what terminal they're doing it, and how much computer time and space
they're using.

• Giving you the appropriate "piece of equipment" — e.g., EDITOR or
RUNOFF.

• Doing all the house work to clean up behind you.

USER FILE DIRECTORY NAMES
Before you do any work on the computer, you must first identify yourself to PRIMOS.
PRIMOS recognizes users by the name they type when logging in. These accounts are called
User File Directories (UFDs); their names are UFD-names. In order to do any work on a
Prime computer, you must know a UFD-name. For each account name, there is a correspond
ing file area. You may, however, use files which are not in your own UFD, if you know the
name of the UFD they are in.

Passwords
In order to keep just anyone from getting access to each person's UFD, PRIMOS can be told
to require a password from a prospective user. Knowing the password identifies you as
someone authorized to use the associated UFD-name.

How to get your UFD
Go to your System Administrator and ask for the name of a UFD, and a password (if needed).
Your UFD-name is often the name of your department or project, or your own name.
Depending on circumstances, you may share a UFD with other people — or have several
UFDs of your own.

HOW TO CORRECT TYPING ERRORS
Anytime you type the Erase character, you will erase the most recent character to the left.
Unless your System Administrator has changed it, PRIMOS's Erase character is the double-
quote (").

F D R 3 1 0 4 2 - 1 1 M a r c h 1 9 8 0

2 USING PRIMOS

Each " you type erases the most recently typed character other than another double-quote
mark. So typing two double quotes (" ") would erase the last two characters, three double-
quotes (" " ") would erase three, and so on. In other words, if you type lygin" ' " "ogim"n,
the computer would read simply login.
The Kill character will erase the entire line. Unless your System Administrator has changed
it, PRIMOS's Kill character is the question mark (?). For example, logim my filp?login myfile
would read login myfile.

HITTING THE CARRIAGE-RETURN KEY
ENTERS A LINE FROM THE TERMINAL
The computer pays no attention to what you type on the terminal until you hit the carriage-
return key. When you press the RETURN key, the system reads the line of input, if any, from
your terminal and:

• Applies any Erase or Kill typing corrections you have made.
• Analyzes what you have typed. If your input can be interpreted as a

command, PRIMOS does it; if not, it gives you an error message, which is
an analysis of what it interpreted your command to be, and why it wasn't
acceptable.

Remember: You enter a line of typing from the terminal to the computer by hitting the
carriage-return key, RETURN.

GETTING READY TO LOG IN
In order to log in, you must know the name of a User File Directory (UFD). You may also
need to know a password to go with this UFD; this will identify you as an authorized person.
Not all UFDs will require passwords.
The general sequence of steps involved in logging in is:

1. Make sure your terminal is connected to the computer, turned on and in
LINE mode.

2. Give the LOGIN command.

CONNECTING THE TERMINAL WITH THE COMPUTER
If your terminal is not connected to the computer, you'll never be able to log in. This is
clearly the first thing you must do.

Turning your terminal on
Plug the terminal in and turn the power on. The power switch on your terminal may be
located either on the keyboard or on the bottom of the terminal. Keyboard switches or keys
are usually labeled POWER or ON/OFF. When you turn your terminal on, if it has an
indicator light it will go on.

Line mode
As we explained in the Introduction (Section 1), there is a key or switch somewhere on your
terminal called the Line/Local Switch. This allows you to use your terminal either as an
independent machine or with the computer. In order to connect the terminal to the
computer, you must be in Line mode. This switch or key is somewhere on the keyboard, or
on the front or back panel. It may also be labeled:

LINE
REMOTE/LINE
ON-LINE/OFF-LINE

The terms LINE, REMOTE, and ON-LINE all mean the same thing.

1 M a r c h 1 9 8 0 2 - 2 F D R 3 1 0 4

USING PRIMOS 2

r

Make sure this switch is properly set. (Some terminals also have an indicator light which
goes on in Line mode.)

Connecting your terminal to a telephone line
Some terminals are connected directly to the computer by wires which run between them.
Other terminals connect to the computer over the telephone. If the latter is the case, in order
to connect your terminal you will need the following:

An acoustic coupler. This converts the terminal and computer signals
into sounds which can pass through the telephone lines. Some terminals
have acoustic couplers built into them, on the back or side; these
built-in couplers have a pair of holes into which you can insert a phone
handset. Other terminals have a small acoustic coupler nearby.
A telephone. Any regular telephone will do; however, be sure that
nobody else can pick up an extension of the line, and that there are other
phone lines available for you and others to use. If you use the phone lines
to connect to the computer frequently, you may want to have a special
phone line put in just for this purpose.
A phone number for the comnuter. Obviously, you can't call the com
puter unless it, too, has a telephone connection. There may be several
numbers, depending on how many phone connections the computer has.

If you have these three things, you are ready to dial in.

Dialing in
Dial the phone number for the computer system. Listen in the earpiece after you finish
dialing. If you get a busy signal, this means all the computer's phone lines are busy. Hang up
and try again later.
If the lines are not busy, the ring will stop after one or two rings, and you will hear a high-
pitched tone in the earpiece of the phone handset. This means the computer is "on the line."
Place the telephone handset correctly onto the openings in the acoustic coupler.
If your terminal has a LINE indicator light, it should light up. Press the RETURN once or
twice.
Now that your terminal is connected to the computer, you're ready to actually log in.

LOGGING IN
If you have been given a UFD-name, and have connected the terminal to the computer, you
are ready to give the LOGIN command. The format of the LOGIN command is:

LOGIN ufd-name [password]
If you have done this correctly, PRIMOS will acknowledge you as being logged in.

?
loqin sales
SALES (15) LOGGED IN AT 10'36 070481
OK,

Your input is shown in rust. The Kill character (question mark),while not required, is a good
practice.

F D R 3 1 0 4 2 - 3 1 M a r c h 1 9 8 0

2 USING PRIMOS

The number in parentheses is your terminal number, assigned by PRIMOS. The time you
logged in (here 10'36) is expressed in the 24-hour system. Here are a few examples of 24-hour
times and their 12-hour equivalents:

O'OO Midnight
O'Ol 12:01 A.M.
l'OO 1:00 A.M.
3'30 3:30 A.M.

11*59 11:59 A.M.
12*00 Noon
12*01 12:01 P.M.
13'00 1:00 P.M.
15'30 3:30 P.M.
23*59 11:59 P.M.

The current date is expressed as month day year. For example, the number "070480" means
July 4, 1980. The "OK," tells you that PRIMOS considers you logged in, and is waiting for
your next command.

PROBLEMS IN LOGGING IN
Here's a list of the possible error messages you may get when trying to log in, along with
their meanings and what you should do.

M e s s a g e M e a n i n g (s)
LOGIN PLEASE «You misspelled the word LOGIN. Try again.
ER' You t r ied to star t work wi thout logging in. Try

again.
There was a temporary transmission problem in
the line. Hit two or three keys (any keys) and a
RETURN, then try again.

Not found. (LOGIN) • You misspelled the name of your UFD. Try again.
ER! No UFD by that name exists. Check your UFD

name.

Insufficient access rights. (LOGIN)
ER!

•You forgot to type your password. Try again.
You misspelled your password - or the password
has been changed. See your System Adminis
trator.

OTHER REASONS YOU CAN'T LOG IN

1. Your terminal is not turned on. (Remember: Some terminals have the
power switch located on the back, or even the bottom; carefully lift
terminal up and look.) Turn terminal on. Make sure the power cord is
properly connected and that the terminal is plugged in.

2. The terminal is in LOCAL mode. This means it is acting purely as a
typewriter. If you have a LINE/LOCAL switch, push it. Then hit any key
plus the RETURN key once or twice; if you've succeeded, the system will
respond with the message LOGIN PLEASE.

1 M a r c h 1 9 8 0 2 - 4 F D R 3 1 0 4

USING PRIMOS 2

~

3. The settings inside your terminal are inappropriate. See your System
Administrator.

4. Your terminal is physically disconnected from the computer.
5. If your terminal connects by way of a telephone, check the following:

• Is your acoustic coupler on?
• Did you dial the correct number for the computer? (If you

did you'll hear a high-pitched whistle in the earpiece.)
• Is the phone handset properly and snugly inserted? Make

sure the cord of the handset is at the end of the coupler
marked CORD.

6. All the phone lines to the computer are busy. Try again.
7. Your terminal is not working. Call the repair person.
8. Last, but not least, the whole computer may be "down". In other words,

OFF. If this is true, there's nothing you can do but wait. The system may
not be working for a short time.

When you have successfully logged in, you'll get a message of the form:
ufd-name (terminal-number) LOGGED IN AT time date

If for any reason, you cannot succeed in logging in after a reasonable number of attempts,
consult your System Administrator.

FINDING OUT WHAT'S IN YOUR UFD
Now that you're in, you've got a "work space" plus a User File Directory containing files to
work on. (Unless you have been given a brand-new UFD, of course. In this case, there are
no files in your UFD — it is "empty".)
In order to specify which file to work on, you have to know what files are in your UFD. While
you could keep track of the contents of your UFD by writing down the names of files on a
sheet of paper and keeping it with you all the time, PRIMOS can do this record-keeping for
you faster and more reliably. PRIMOS maintains an up-to-date list of the names of all the
files within your UFD. To see this list, you give the LISTF (for List Files) command. The
format of the LISTF command is:

LISTF

You need only type the letter L, if you wish.
Let's suppose you have logged into a UFD named STAFF, whch contains the the files
FRANK, MARTHA, ALBERT, and ROSEMARY. Giving the LISTF command would have this
effect:

OK, listf

OFD=STAFF 3 OWNER

FRANK MARTHA ROSEMARY ALBERT

OK,

F D R 3 1 0 4 2 - 5 1 M a r c h 1 9 8 0

2 USING PRIMOS

If there were no files in the STAFF UFD, doing a LISTF would have this result:

OK, listf

UFD=STAFF 3 OWNER

.NULL.

OK,

The number after the name of the UFD helps the computer find the UFD. This number is not
important to you, (it identifies the "logical disk"). The word next to the number will either
be OWNER or NONOWN. Owner means you can inspect and change files; Non-owner
means a password was required and you did not give it. As a non-owner, you are permitted
to inspect files, but not change them. The error message NO RIGHT indicates you have not
given the necessary password.
It's a good idea to give the LISTF command at the beginning and end of each session, to check
up on what files you've got in your directory.

LOGGING OUT
When you have finished a session at the terminal, you must inform PRIMOS you are done.
This is called logging out.
Logging out is the opposite of logging in — it tells PRIMOS that you have finished whatever
you were doing (or are going to stop for the time being). PRIMOS puts all your files away,
and signs you out. You log out by giving the LOGOUT command. The format of the LOGOUT
command is:

LOGOUT
PRIMOS acknowledges the command with a message of the form:

ufd-name (terminal jf) LOGGED OUT AT time date
TIME USED=terminal-time CPU-time I/O-time

• Terminal time is the amount of elapsed clock time between logging in and
logging out. It tells you how long your session lasted. Most of your "real"
time the computer probably was "waiting" - i.e., doing other work until you
gave it a new command.

• CPU time means how much actual time the computer spend following your
commands. (CPU stands for Central Processing Unit.)

• I/O time is the amount of time the computer spends moving data around.
Giving the LOGOUT command looks like this:

OK, logout

STAFF (15) LOGGED OUT AT 11*28 070481
TIME USED= 0'12 0'06 0'032

1 M a r c h 1 9 8 0 2 - 6 F D R 3 1 0 4

USING PRIMOS 2

NOTES ON LOGGING OUT
It's often a good idea to log out if you're going to leave your terminal for awhile, to prevent
anyone else from doing work on your account time, or from making changes in your files.
There's nothing wrong with leaving yourself logged in all day, but since logging in and out
is so easy, it's a good idea to be logged in only when you want to work.
Your PRIMOS system may be set to log out inactive terminals after a period of time, perhaps
an hour or two.

F D R 3 1 0 4 2 - 7 1 M a r c h 1 9 8 0

^ x / £ ^

The essentials of EDITOR
EDITING
Editing a file consists of three basic operations:

• Searching
• Examining
• Changing

You search in a file to locate material you wish to change, and you examine it. ensuring that
it is, indeed, what you sought. You make changes (or additions, or deletions), and then re
examine, to check that you did them correctly.

WHAT EDITOR IS
EDITOR is a system designed to let you create and edit text files on the computer. EDITOR
has a few dozen commands. Some of these do work on a file; others make it easier to do this
work.
You make a file by typing it on your terminal, line by line, and then editing this text.
If you have a file typed like this:

Twinkle, twinkle, little bat!
How I wonder what you're at!
Up above the world you fly,
Like a tea-tray in the sky.

EDITOR lets you correct and change it to:

Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,

m L i k e a d i a m o n d i n t h e s k y .

F D R 3 1 0 4 3 _ 1 3 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

CONVENTIONS IN EDITOR

The erase and kill characters
EDITOR'S erase and kill characters are the same as those of PRIMOS. Unless you or your
System Administrator have changed them, EDITOR'S Erase character is the double-quote
("), and Kill character is the question-mark (?).

Entering an erase or kill character in your text
As you know, the erase and kill characters (default double-quote (") and question-mark (?))
have special meanings in EDITOR. Every " erases the previous character; ? kills (erases) the
entire line.
You can enter a " or ? as actual characters in your text by preceding them with an up arrow
("). The table below shows the results of various combinations of ", " and ?.

You Type Result
Erase previous character
Enters a
None (Enters ", then erases it)

? K i l l l i n e
" ? E n t e r s a ?
*?? Kill entire line, including ?
*?" Enters a ? and then erases it
" ? K i l l s e n t i r e l i n e
" ? " " E n t e r s ? "

Command format
EDITOR'S command format is:

COMMAND parameter
Command words: The word in capital letters is the command word. The letters shown in rust
in the command word indicate the minimum required abbreviation. You must type at least
these letters; you may type as many more as you wish. The following are all acceptable ways
to enter a command whose format is APPEND: A, APP, APPE, APPEND.
Also you may type the letters of command words in any combination of upper and lower
case letters. All of the following are equally valid: A, a, ApPend, appEND.
Parameters: As a rule, the parameter in a command format will be:

• The word filename, representing a filename.
• The better n, representing a number.
• The word character, representing a single character.
• Any of the words string, text, or newline, representing a piece of text.

Parameters which are enclosed in brackets - [filename] - are optional. EDITOR will use the
indicated default value, if you do not specify a value.
If the parameter is a number, represented by the letter n, you do not need to type a space
between the command word and the number. For example, the following are all valid:

Print5
Pr5
PRINT 15
p-5
P " 5

Note that there cannot be a space between the minus sign and a number.

1 M a r c h 1 9 8 0 3 - 2 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR 3

~

r

If the parameter is a filename or a character, you must have at least one space between the
command word and the parameter, as in:

load memo
kill &

If the parameter is text, string, or newline, representing a portion of text (or "text string"),
EDITOR assumes that there is exactly one space between the command word (or abbrevia
tion) and the text string, and that any subsequent spaces are to be considered part of the text
string.

find DEPARTMENT
append and henceforth
insert Dear Sir or Madame,

Any space after the first space is considered part of the text string.
For example, the command:

find S S S henceforth
would find the string S S(henceforth which began with two blank spaces.

Example format
In the examples throughout this book your input is in rust, and the computer's output is in
dark brown.

HOW EDITOR WORKS
EDITOR has a special file area called the work file which is reserved for its own use.
EDITOR puts all input into this work file and does all its editing on the contents of this work
file.

INPUT AND EDIT MODES
EDITOR has two modes: input mode and edit mode. In input mode, EDITOR treats whatever
you type as text which is put directly into your work file, line by line. In edit mode, EDITOR
treats your input as commands, and executes them on the contents of the work file.
You can switch from one mode to the other without trouble. How you enter EDITOR
determines whether you begin in input or edit mode, but during a given session, you are
likely to switch between input mode and edit mode a number of times.

ENTERING EDITOR
You enter EDITOR by typing the ED command:

ED [filename]

Entering a new file
If you do not specify a filename when you give the ED command, EDITOR assumes that you
want to create a brand-new file, and goes into input mode.

OK, ed
INPUT

Everything you type will then be treated as input, and inserted directly into your work file
until you give EDITOR the signal to switch over to EDIT mode.

F D R 3 1 0 4 3 - 3 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

Editing an existing file
If you do specify a filename when you give the ED command, EDITOR assumes you want to
be in EDIT mode so you can edit this file, e.g.,

OK, ed sales.shoes
EDIT

Here's what happens when you give the ED command and specify a filename.
1. EDITOR hunts for this file in your UFD. If the file exists EDITOR will

find it. (If not, you will get:

Not found. FILENAME (OPENR)
ER!

Use the LISTF command to check the contents of your UFD.)
2. EDITOR makes a copy of the file and puts the copy in your workfile. The

original file remains in storage and is not affected by anything you do
(until you are finished and want to make your changes permanent). This
permits you to make changes, alterations, and additions to a copy without
having to lose the original file. You don't have to worry if you make
mistakes, or change your mind, because you can always go back to the
original. You can also make several slightly different versions of the
original file, saving each variation with its own different filename.

3. Once EDITOR has copied the file into its work space, it goes into EDIT
mode, on the assumption that you want to edit the copied file. If you want
to input new text somewhere into the work file, you can switch to input
mode. Note that entering new text into the file does not change the
original file.

Before we explain how to switch from edit to input mode, let's take a quick look at how to
use input mode to enter text.

ENTERING TEXT IN INPUT MODE
When you are in input mode, EDITOR inserts whatever you type into the specified filename
(either new or old), line by line. In input mode, EDITOR will interpret a typed semicolon (;)
as a RETURN. This allows you to end a line of input by typing either a semicolon or a
carriage return. For example the input:

line one;line two;line three

would become

line one
line two
line three

Following a semicolon by another semicolon (in input mode)

line one;;line three

1 J a n u a r y . 1 9 8 1 3 - 4 F D R 3 1 0 4 (1 1

THE ESSENTIALS OF EDITOR 3

inserts a blank line in the file,

line one

l ine three

This obviously means you cannot type a semicolon as part of the file. Later we'll show you
how to get around this, using the CHANGE command.

SWITCHING FROM INPUT TO EDIT MODE
EDITOR switches from input mode to edit mode whenever you type either:

1. A semicolon followed by a RETURN, or
2. Two RETURNS in a row.

For example,
I N P U T I N P U T
text;RETURN or text RETURN
E D I T R E T U R N

EDIT
Each of these two sequences encloses a null input line. A null input line is a line of input that
contains no text or semicolon.
You enter a blank line (a line containing nothing but a RETURN) whenever you type:

t e x t ; ; t e x t

HOW EDITOR WORKS ON ITS FILE
EDITOR is a line-oriented system. EDITOR sees your file as a collection of lines.

The pointer and the current line
EDITOR works on one line of your file at a time. This line is called the current line. EDITOR
remembers which line is the current one by positioning a pointer alongside. (Think of the
pointer as a paper clip which marks your place but can be moved without leaving marks.)

Null lines
Your file also contains place markers called null lines. A null line does not really exist; it
marks the place where a line can be inserted.

EDITOR indicates the presence of a null line by outputting:

.NULL.

This is not the contents of the line! It is only a reminder.
There is always a full line above the first and below the last line of your file to permit
insertion of lines above the top line or below the bottom line. EDITOR has TOP and
BOTTOM markers set beyond these null lines, to remind you when you are at the end of
your file.
Whenever you delete a line. EDITOR places a null line opposite the pointer in case you want
to immediately insert a new line there. The .NULL, will disappear as soon as you move the

F D R 3 1 0 4 3 - 5 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

pointer to a new current line. (Note: a null line is different from a blank line. A blank line
has no contents, but has a return at its end.)

Line numbers
EDITOR assigns a list of line numbers to the lines in the work file, for its own reference. This
list is updated when lines are added or deleted, so that every number belongs to a non-null
line.
EDITOR can tell you the line number of the current line, which the pointer indicates. You
can move the pointer up and down, either by a given number of lines or by specifying a line
number. You can delete or retype the current line, move the pointer to a line which contains
a specific word, change, etc. These tasks are all done by giving commands in edit mode.

GIVING COMMANDS IN EDIT MODE
When you are in EDIT mode, you type commands instead of text. EDITOR'S commands fall
into several categories, such as:

• Commands that print lines (PRINT) or a line number (WHERE).
• Commands that reposition the pointer to a specified line (TOP, BOTTOM,

NEXT, POINT) or to a line containing a specified string (FIND, NFIND,
LOCATE).

• Commands that change a line (APPEND, CHANGE, DELETE, INSERT,
RETYPE).

• Commands that return you to PRIMOS (FILE, QUIT).
These commands are sufficient for you to do basic work with the EDITOR. We'll explain
each of these essential commands shortly.

SWITCHING FROM EDIT TO INPUT MODE
EDITOR will switch from edit mode to input mode whenever you type a null command line.
A null command is a command containing no command word or parameter. You enter one
by following a non-null command with a:

s e m i c o l o n (;) \ / s e m i c o l o n (;)
o r / \ o r

RETURN \ followed by a 1 RETURN
o r I j o r

c o m m a (,) J { c o m m a (. 1

The simplest way is RETURN followed by RETURN.
Commas cannot end the APPEND, INSERT, OVERLAY and RETYPE commands as they
would be treated as text.
In other words, typing any pair of semicolons, carriage-returns, and/or commas after a
command, will switch you from edit mode to input mode, except when the comma follows
APPEND, INSERT, OVERLAY or RETYPE.
When you switch from edit to input mode, new input will be inserted after the most recent
current line in edit mode. When you switch from INPUT to EDIT, the last line of input
becomes the current line.
EDITOR displays the mode whenever you switch between input mode and edit mode. It is
important to remember which mode you are in. When you are in input mode, if you give a
command it will be put into your file as text. In edit mode, EDITOR will try to interpret as
commands what you meant as text. The results in both cases will be undesirable.

1 M a r c h 1 9 8 0 3 - 6 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR 3

BASIC EDITOR COMMANDS
You should be able to do most of your text-editing using this selection of the EDITOR
commands.

APPEND FIND(n) POINT
BOTTOM INSERT PRINT
CHANGE LOCATE QUIT
DELETE NEXT RETYPE
FILE NFIND TOP
FIND NFIND(n) WHERE

These commands are explained in the next few pages. A categorized list of the remaining
commands appears at the end of this section. Once you have become proficient at using this
first group, you should have little trouble learning to use any of the other commands
explained in Section 8, Sample Sessions, and the EDITOR Reference Section, Section 9.

Sample file
The following file, which is a "memo", will be used in examples in this section.

Mr. Damian Chronos, well-known time management
consultant, has been engaged to give us a
series of informal workshops on the topic of
effective time management. He has given these
workshops at our branch offices in New York,
New Jersey, New Hampshire, and Maine; and at
our main office in Connecticut.

If you can answer either of the following
questions with a "yes", you should attend:

"Am I often late with an assignment?"

"Do things often seem to back up on me?"

Mr. Chronos uses a technique combining insight
and humor; I am sure this will be a delightful
and productive experience.

3/25/82

EDITOR'S ERROR MESSAGES
In edit mode, if you give EDITOR a command which it cannot understand, you will get one
of the following two error messages:

• BAD command - This means that you did not use the proper format for the
command.

• ? - Your input could not be interpreted as any of the EDITOR commands.
This is often a result of thinking that you are in input mode when you are
still in edit mode.

F D R 3 1 0 4 3 - 7 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

For example:

appen
BAD APPEN Improper command format
nm
? M e a n i n g l e s s c o m m a n d
c / o f fi c a
BAD C Bad command format
pfin tG
? M e a n i n g l e s s c o m m a n d

THE PRINT COMMAND
The PRINT command prints n lines of your file, including the current line, and makes the
last line PRINTed the new current line. The format of the PRINT command is:

PRINT [n]
If n is -1, 0, or omitted, the default value of 1 is used. If n is negative, EDITOR moves the
pointer back n lines from the current line, and then prints one line, which is the new current
line.

EDIT
print 3
.NULL.
Mr. Damian Chronos, well-known time management
consultant, has been engaged to give us a
print 6
consultant, has been engaged to give us a
series of informal workshops on the topic of
effective time management. He has given these
workshops at our branch offices in New York,
New Jersey, New Hampshire, and Maine; and at
our main office in Connecticut.
print -5
series of informal workshops on the topic of
print -1
series of informal workshops on the topic of
p r i n t -2
consultant, has been engaged to give us a
print 0
consultant, has been engaged to give us a
p r i n t
consultant, has been engaged to give us a
q

OK,

The space between PRINT and is optional. A PRINT immediately after the TOP or
BOTTOM command yields .NULL.

1 M a r c h 1 9 8 0 3 - 8 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR

~

r

THE WHERE COMMAND
The WHERE command prints out the line number for the current line. The format of the
WHERE command is:

WHERE
The WHERE command is most useful with the POINT command.

where
LINE 1
next3
series of informal workshops on the topic of
where
LINE 3
next 5

where
LINE 3
next-12
TOP
3

POINTER-MOVING COMMANDS
Pointer-moving commands reposition the pointer either to a specific line or to a line
containing a specific string. EDITOR'S specific pointer-moving commands are TOP, BOT
TOM, NEXT, and POINT.

The TOP command
The TOP command positions the pointer at the null line at the top of the file, just above the
first line of text. The format of the TOP command is:

TOP
For example:

top
p r i n t
.NULL.
p r i n t 2
.NULL.
Mr. Damian Chronos, well-known time management

The BOTTOM command
The BOTTOM command positions the pointer at the bottom of the file, just below the last
line of text. You use this command prior to entering new text at the end of an existing file.
The format of the BOTTOM command is:

BOTTOM

F D R 3 1 0 4 3 - 9 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

For example:

bottom
p r i n t
.NULL.
next
BOTTOM
next-1
3/25/82

The NEXT command
The NEXT command moves the pointer n lines and prints the new current line. Positive
values of n move the pointer down towards the bottom of the file; negative values up
towards the top. The format of the NEXT command is:

NEXT [n]
If n is zero or unspecified, the default value of 1 is used. If n is great enough to move the
pointer beyond the top or bottom null line, the pointer stops at the null line, and either TOP
or BOTTOM is printed.

top, next
Mr. Damian Chronos, well-known time management
next 2
series of informal workshops on the topic of
next4
our main office in Connecticut.
next -5
consultant, has been engaged to give us a
next0
series of informal workshops on the topic of
next
effective time management. He has given these

The POINT command
The POINT command positions the pointer at line n. The line numbers are not actually part
of your file EDITOR generates them for its own reference. The format of the POINT
command is:

POINT n
The POINT command is equivalent to the sequence TOP, NEXT n. The value of n must be
greater than 0. Point 0 will give you an error message. POINT 1 is equivalent to TOP, NEXT.
If n is greater than the number of lines in the file, the pointer will be left at the bottom.

point 3
series of informal workshops on the topic of
point 6
New Jersey, New Hampshire, and Maine; and at
where
LINE 6

1 M a r c h 1 9 8 0 3 - 1 0 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR 3

'

r

STRING-FINDING COMMANDS
The FIND and LOCATE commands search for the first line beyond the current line which
contains a specified string.
These commands distinguish between upper and lower case letters in a specified string. If
you are unable to find old lines in your file, but can find newly inserted ones, and your
current display is set for all CAPS, the CASE control on your terminal may be in the wrong
position.

The LOCATE command
The LOCATE command searches for the first line below the current line which contains
string anywhere in that line. It leaves the pointer positioned to the line it found. The format
of the LOCATE command is:

LOCATE string
If no line containing string is found below the current line, BOTTOM will be printed and the
pointer left at the end of the file. The string cannot contain commas.

locate Hampshire
New Jersey, New Hampshire, and .Maine; and at

The FIND command
The FIND command is a specialized version of LOCATE which only checks to see if string
is at the beginning of a line (i.e., the first character is in column 1, the second in column 2
...). FIND searches for the first line below the current line which begins with string. The
format of the FIND command is:

FIND string
If no line beginning with string can be found, the pointer stops at the end of the file, and the
word BOTTOM is printed. The string cannot contain commas.

find series
series of informal workshops on the topic of

The NFIND command
The NFIND command searches for the first line below the current line which does not begin
with string. The format of the NFIND command is:

NFIND string
For example:

OK, ed sales.shoes
EDIT
p r i n t s
.NULL
0938 sandals
0939 pumps
0940 clogs
1040 boots
1041 sneakers
top, nfind 09
1040 boots

FDR 3104 3 - 1 1 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

If NFIND can't find a line which doesn't begin with string, the pointer will be left at
BOTTOM. The string cannot contain commas.

Searching on a specific column
You can also FIND a string starting on other than column 1 of the line, by specifying the
number of the column within parentheses directly after the command word.

FlND(n) string
The parentheses () around the column number are required. There cannot be any spaces
between FIND and (n).

OK, ed sales.shoes
EDIT
find(7) clogs
0940 clogs

Like FIND, you can NFIND beginning on a column other than column 1 using the format:
NFlND(n) string

For example:

t
nfind(2) 9
1040 boots

LINE-CHANGING COMMANDS
The APPEND, CHANGE, DELETE. INSERT, and RETYPE commands alter the text on one or
several lines.

The APPEND command
The APPEND command attaches the specified string to the end of the current line. The
format of the APPEND command is:

APPEND string
Remember: One blank separates the command word APPEND (or its abbreviation) from the
string you wish to append. All further blanks will be treated as part of the string. Notice the
two blanks after append in this example:

OK, ed memo
EDIT
point2
consultant, has been engaged to
append give us a
consultant, has been engaged to give us a

If you want to have one space between the last word of the current line and the first word
you are appending, you must type two spaces between the command word and the first word
of appended string.

1 M a r c h 1 9 8 0 3 - 1 2 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR 3

~

r

point 1
Mr. Damian Chronos
append , well-known time management
Mr. Damian Chronos, well-known time management

If there is no blank between APPEND and string, EDITOR gives an error message, and you
should try again. Text is terminated by either a RETURN or a semicolon (;). You can use
commas in the APPEND string, but not semicolons.

point 5
workshops at our branch offices in New
append York,
workshops at our branch offices in NewYork,

The CHANGE command
The CHANGE command replaces one string in the current line with another string. The first
character after the command word CHANGE (or abbreviation) is used as the delimiter. The
format of the CHANGE command is:

CHANGE/string-l/string-2/[G] [n]
Use a delimiter which does not occur in the text you are changing. Slash (/) is a common
delimiter, but if your text to be changed contains slashes, use a different character, as in
these examples:

find 3
32/1//32
change:32/1:3/21:
3/21//82
C * / / l / l
3/21/82

If the letter G (for General) is specified, CHANGE will change every occurrence of string-1
on a line. If you don't specify G, only the first incidence of string-1 will be changed.

point 5
workshops at our branch offices in NewYork,
change/NewYork/New York/
workshops at our branch offices in New York,
next
N. Jersey, N. Hampshire, and Maine; and at
c/N./New/g
New Jersey, New Hampshire, and Maine; and at

If the value of n is either 0 or 1, EDITOR will only make changes on the current line. (If n
is either 0 or unspecified, the default value of 1 is used. If a value other than 0 or 1 is
specified, EDITOR will inspect and make changes on n lines starting at the current line, and
leave the pointer positioned at the nth line. If there are fewer than n lines in the file the
message BOTTOM will be printed. EDITOR will print out all changed lines, plus the last line
examined.

F D R 3 1 0 4 3 - 1 3 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

1. Remember to issue the TOP command before making changes on the file
as a whole.

2. If you end the command with a return, you can omit the closing delimiter.
3. You can specify the semicolon (;) as a text character within the delimiters

e.g., if you used "@" every place in your file where you wanted to use ";",
then the command sequence TOP, CHANGE/@/;/G9999 would change all
the @'s to ;'s. (Make sure n is greater than the number of lines in your
file.)

4. You can use CHANGE to insert characters at the beginning of a line with
the sequence:
change//string/
For example:

point7
main office in Connecticut.
change//our /
our main office in Connecticut.

The DELETE command
The DELETE command deletes n lines, including the current line, and leaves the pointer at
a null line where the last deleted line was. The null line will be maintained, in case you wish
to insert a new line, until a new command moves the pointer away. The format of the
DELETE command is:

DELETE [n]
If n is not specified, only the current line is deleted. The value of n may be positive or
negative, indicating deletion of the current line plus n-1 below or above the current line.
Since n always includes the current line, the commands d, dl, and d-1 are equivalent.

bottom
n-1
3/25/82
delete
p r i n t
.NULL.

Note
The DUNLOAD command, explained in the EDITOR REFER
ENCE section, permits you to move n lines to a new file, thus
removing them from without deleting them altoether. Al
though this technique accumulates files in your UFD, it can
be useful if you are afraid of accidentally DELETEing large
portions of your file.

The INSERT command
The INSERT command inserts a specified newline following the current line; the inserted
line then becomes the current line. The format of the INSERT command is:

INSERT newline

1 J a n u a r y . 1 9 8 1 3 - 1 4 F D R 3 1 0 4 (1 8)

THE ESSENTIALS OF EDITOR 3

For example:

point9
If you can answer either of the following
insert questions with a ""yes"", you should attend
p r i n t
questions with a "yes", you should attend:

The RETYPE command
The RETYPE command deletes the current line and replaces it with the text specified in
string. The format of the RETYPE command is:

RETYPE string
Remember: The first space after RETYPE separates the command word from the parameter;
all further spaces are part of string.

point 12
"Am I iftenb late with an assiuqnebt?"
r ""Am I often late with an assignment"?""
p r i n t
"Am I often late with an assignment?"

The string is terminated by either a semicolon (;) or a RETURN.
RETYPE followed immediately by a space and RETURN will act as a DELETE, erasing the
current line and leaving the pointer at a blank line; RETYPE followed only by a RETURN
will yield: BAD R.

ENDING AN EDITOR SESSION
Giving either the FILE command or the QUIT command tells EDITOR you are done editing
the file. Each has a specific use, which is explained below.

The QUIT command
The QUIT tells EDITOR you do not want to save the EDITOR work file, but instead, want to
preserve the original and want to return to PRIMOS command level. The format of the QUIT
command is:

QUIT
If you have created/modified a file during the session, EDITOR will respond to a QUIT
with:

FILE MODIFIED OK TO QUIT?

This message asks whether EDITOR may throw away the work file.

A YES (or Y. YE, O. OK or RETURN) response will QUIT you; you will get back the OK
prompt, meaning you're at PRIMOS command level and your session was not saved. Any
other response will provoke a PLEASE FILE (see the explanation of the FILE command);
doing a FILE, with or without a filename (depending on the circumstances), will auto-

F D R 3 1 0 4 3 - 1 5 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

matically QUIT you, having saved your work. If you did not create or modify a file, saying
QUIT automatically returns you to PRIMOS.

OK, ed memo
EDIT
print 2
.NULL.
Mr. Damian Chronos, well-known time management
q u i t

OK,

OK, ed memo
EDIT
delete 3
q u i t
FILE MODIFIED, OK TO QUIT? yes

OK,

OK, ed memo
EDIT
delete 3
q u i t
FILE MODIFIED, OK TO QUIT? no
PLEASE FILE
->
file new.memo

T h e F I L E c o m m a n d ^
The FILE command turns the EDITOR work file, (which is so far only a temporary) into a
permanent file in your UFD and returns you to PRIMOS.

WARNING
Since the work file does not exist outside of EDITOR, you
must FILE if you want to save your work.

The format for the FILE command is:
FILE [filename]

If you have been creating a new file, you must specify filename. (The error message
FILENAME MUST BE SPECIFIED will occur if you don't.)

fi l e
FILE NAME MUST BE SPECIFIED
? - * >
file memo

OK,

, . , . m o n 3 - 1 6 F D R 3 1 0 41 M a r c h 1 9 8 0 ° 1 U

THE ESSENTIALS OF EDITOR 3

r

r

You cannot have two files with the same name in the same UFD! If you give a filename
which already exists in your UFD, EDITOR will delete the old file by that name from your
UFD (without any warning), and put the EDITOR work file in its place.
The same warning holds true for old files. If you have been working on an old file, and you
specify the old filename, or say FILE without any filename, your old copy will be deleted,
and only your new version kept. Giving a new filename will keep both the old and new
versions — but be sure not to accidentally wipe out some other old file by using its name.
You don't need to mention the filename when updating an old file:

ed sales. ju l
1 $451

C h i c k e n w i r e $ 4 5 1 8 1 2
c / 8 1 / 8 . 1 /

C h i c k e n w i r e $ 4 5 1 8 . 1 2
fi l e

Although "file sales.jul" would work, it's not good practice—you could inadvertently type
"file sales, jun" and wipe out the June sales figures.
If you do not wish to save your work from a given session - i.e., want to save your old version,
if any —type QUIT instead of FILE. If you have made any insertions or changes in your
current file, EDITOR will inquire: FILE MODIFIED, OK TO QUIT? A YES response QUITs
you back to PRIMOS; NO provokes PLEASE FILE, at which point you give the FILE
command.

q u i t
FILE MODIFIED, OK TO QUIT? no
PLEASE FILE
p
file new.memo

OK,

The rules for making filenames are:
1. Filenames can be up to 32 characters long.
2. Filenames can contain only the following characters: A through Z, 0

through 9, &-$._/ §
3. The first character may be any legal character except a digit.
4. Characters NOT permitted in filenames include: imbedded blanks (e.g.,

MY FILE), and special characters.
5. Upper and lower case letters are treated as upper-case by PRIMOS.

(Letters entered in lower-case will be converted to upper-case.)

Va l i d fi l e n a m e s I n v a l i d fi l e n a m e s
N E W F I L E A ?
T o d a y s - P r i c e s T W O @ J O H N
H i g h s & L o w s " E U R E A K A "
S M o n t h l y . R e p o r t W H Y A D U C K
R34587
A-Tale-Of-Two-Cities

F D R 3 1 0 4 3 - 1 7 1 M a r c h 1 9 8 0

3 THE ESSENTIALS OF EDITOR

The file command can also be used to make copies of any file, simply by typing ED plus
filename and FILEing the copied work file immediately with a new filename, as in:

OK, ed memo
EDIT
file memo2

OK,

If you are inputting a lot of data into a file, new or old, it is a good idea to FILE it periodically,
say after a page or two, to make sure you don't inadvertently lose what you've just entered.

MISCELLANEOUS INFORMATION CONCERNING EDITOR

Tabs
Do NOT try to input tabs with the terminal's TAB key! EDITOR will not understand them.
To signal a tab, use the Backslash (\) character. Typing this line of input

use\them\tabs\wisely, buddy

would be interpreted as:

u s e t h e m t a b s w i s e l y , b u d d y

EDITOR has pre-set tab stops at columns 6, 12, and 30. To change these and/or add more tab
stops, see the TABSET command in the Editor Reference section. To edit your tabulated
files, use the MODIFY or OVERLAY commands.

Up-Arrow (" or t)
Because the up-arrow is used for inserting literal erase (") and kill (?) characters, you can
only include a literal up-arrow by typing two of them. EDITOR will always print this literal
up-arrow as two up-arrows. All other programs, such as RUNOFF and SLIST. will print it as
a single up-arrow.
(You can enter any ASCII character except line feed, octal 212, as "nnn where nnn are the
3 octal digits representing the ASCII character.)

GENERAL INFORMATION ABOUT EDITOR
• EDITOR works on a copy of the original file, called the work file.
• The erase character (usually double-quote) erases the previous character.
• The kill character (usually question-mark) erases the entire line.
• The backslash \ is the tab character; EDITOR has pre-set tabs in columns

6, 12, and 30.
• The pointer indicates the current line.

EDITOR'S OTHER COMMANDS
Besides the commands you have just learned, EDITOR has additional commands. For more
information about each command, see the EDITOR Reference Section.

1 M a r c h I 9 6 0 3 - 1 8 F D R 3 1 0 4

THE ESSENTIALS OF EDITOR 3

~
File loading and unloading commands

LOAD filename
UNLOAD filename [n]
UNLOAD filename TO string
DUNLOAD filename [n]
DUNLOAD filename TO string

Line changing commands
DELETE TO string
MODIFY/string-l/string-2/[G] [n]
GMODIFY
MOVE
OVERLAY string

Control commands

XEQ buffer
PAUSE

Symbol changing commands
PSYMBOL
SYMBOL name character
ERASE character
KILL character

Mode changing commands
VERIFY
BRIEF
MODE CKPAR
MODE NCKPAR
MODE PROMPT
MODE NPROMPT
MODE NUMBER
MODE NNUMBER
MODE COLUMN
MODE NCOLUMN
MODE COUNT
MODE NCOUNT
MODE PRALL
MODE PRUPPER
MODE PRLOWER

Value setting commands
LINESZ n
PTABSET tab-l...tab-8
TABSET tab-l...tab-8

Input/output commands
INPUT (ASR)
INPUT (PTR)
INPUT (TTY)
PUNCH (ASR) n
PUNCH (PTP) n

1 March 1980 3-19 FDR 3104

THE ESSENTIALS OF EDITOR

WHAT'S NEXT?
You now know enough to log into the system, create new files, with EDITOR, and edit
them. Section 4 gives you more PRIMOS-level information on dealing with your files. The
EDITOR Reference Section contains complete information on all EDITOR'S commands. At
this point, you should be able to read through the reference section and have no trouble
learning additional commands.

F D R 3 1 0 4 3 - 2 0 1 M a r c h 1 9 8 0

<S0£?*1_.

You'll easily master your Prime computer

More
PRIMOS

MORE PRIMOS COMMANDS
You've learned how to log into your UFD, make and edit files, get a list of these files, and log
out, using the LOGIN, ED, LISTF, and LOGOUT commands. There are several other
PRIMOS-level commands which can be useful. These commands are:

ATTACH FUTIL
CLOSE SLIST
CNAME SPOOL
CREATE SORT
DATE TERM
DELETE

USING OTHER UFDS—THE ATTACH COMMAND
In Section 2, we mentioned that once you have logged into your UFD via the LOGIN
command, you can not only use the files in your own UFD, but also those in other UFDs. The
ATTACH command tells PRIMOS to attach you to a different UFD. Since you can only work
from one UFD at a time, PRIMOS will detach you from the UFD you are currently using and
then give you access to this new UFD. The format of the ATTACH command is:

ATTACH ufd-name [password]
When you type an ATTACH command, PRIMOS gives you access to this new UFD. If you
type the LISTF command, PRIMOS gives you a list of the files in this new UFD. If you create
a new file, when you give the FILE command, PRIMOS will put this new file into the UFD
to which you are currently ATTACHed. This UFD is known as your current UFD, or current
directory.

OK, attach staff
OK, listf

UFD=<SALES>STAFF 3 OWNER

FRANK MARTHA ROSEMARY ALBERT

— O K ,

You may give the LOGOUT command while attached to another UFD than your own;
PRIMOS will still "sign you out" correctly.

F D R 3 1 0 4 4 - 1 1 M a r c h 1 9 8 0

4 MORE PRIMOS

If you specify a UFD that the system cannot find (often the result of a spelling error), the
ATTACH command will be ignored and you will get a message of the form:

NOT FOUND, ufd-name

If you specify a UFD that has a password, but do not give the password, you will be
ATTACHed to the UFD as a non-owner. You can always check this be giving a LISTF
command; on the same line as the name of the UFD will be, after a number, either the word
OWNER for owner, or NONOWN for non-owner.
When ATTACHed to a UFD as a non-owner, you cannot edit or SLIST any of its files. You
can give the ED command and put text into your work file, but will not be able to FILE it.
To gain owners rights to the UFD under these circumstances, simply give the ATTACH
command again, this time including the password after the name of the UFD.
If you misspell the password (possibly because it has been changed), you may get the
message:

OK, attach payrol dolla5
Bad password. PAYROL (df unit)
ER!

This will leave you logged in but not ATTACHed to any UFD at all. If you attempt to work
on files at this point you will get the message:

ER! listf
No UFD attached.
ER!

Don't worry. Just give the ATTACH command again. The following example illustrates the
ATTACH and LISTF commands:

OK, listf

UFD=<SALES>DATA 2 OWNER

NEW.REPORT REP.DISP SALES.JAN SALES.FEB
SALES.MAR SALES.APR SALES.MAY SALES.JUN SALES.JUL

OK, a STAFF
OK, listf

UFD=<SALES>STAFF 2 OWNER

FRANK MARTHA ROSEMARY ALBERT

OK, a products
OK, listf

UFD=<SALES>PRODUCTS 2 NONOWN

1 M a r c h 1 9 8 0 4 - 2 F D R 3 1 0 4

MORE PRIMOS 4

TOYS GAMES CLOTHING SHOES HARDWARE APPLIANCES
POSTERS RECORDS PCA COMPUTERS PUPPIES JUNK

OK, ed games
Insufficient access rights. GAMES (OPENR)
ER! a products psword
OK, listf

UFD=<SALES>PRODUCTS 2 OWNER

TOYS GAMES CLOTHING SHOES HARDWARE APPLIANCES
POSTERS RECORDS PCA COMPUTERS PUPPIES JUNK

OK, ed games
EDIT
OK,

MAKING SUB-UFDS—USING THE CREATE COMMAND
The CREATE command allows you to make subdivisions in your UFD called sub-UFDs. In
order to explain the CREATE command, we must first explain the concept of sub-UFDs.
As you recall, your User File Directory is a list of files. A sub-UFD is a selection of those files
which have been grouped together. This grouping has a name called a sub-UFD-name. Once
you have logged in to your UFD, you can ATTACH to any sub-UFD within it. This sub-UFD
will then be your current list of only those files within this sub-UFD.
Your UFD can contain files and sub-UFDs. You can make sub-UFDs within sub-UFDs. A sub-
UFD can contain files and sub-UFDs.
The command which lets you define and name a sub-UFD is the CREATE command.
Whenever you give a CREATE command, PRIMOS creates a sub-UFD within whatever UFD
or sub-UFD you are currently in -i.e., if you are working in your UFD, PRIMOS creates a
sub-UFD within the UFD; if you are working in a sub-UFD of your UFD. PRIMOS will create
a sub-UFD within that sub-UFD. The format of the CREATE command is:

CREATE sub-ufd-name
PRIMOS does not let you have two files or sub-UFDs with the same name in your current
UFD. If you attempt to CREATE a sub-UFD with a name already in use, you will get the
message: ALREADY EXISTS

Using these sub-UFDs
In order to work within a sub-UFD, you must first ATTACH to it. The format of is:

ATTACH *>sub-ufd-name [password]
You must prefix *> to the name in order to ATTACH to a sub-UFD. This group of characters
identifies sub-ufd-name as the name of a sub-UFD in your current UFD. If you omit the star-
greater-than, PRIMOS will look for a UFD with the given name, and, if it fails to find one,
will give the error message: NOT FOUND
When you have attached to a sub-UFD, it becomes your current UFD.
You have now learned two uses for the ATTACH command:

• Attaching to a UFD.
• Attaching to a sub-UFD within a UFD or a sub-UFD.

F D R 3 1 0 4 4 - 3 1 M a r c h 1 9 8 0

MORE PRIMOS

- *%%•

Attaching to a sub-TJFD

We haven't shown all the ways to use ATTACH, but we've covered enough to get you started.
More information about ATTACH, and about pathname (which we haven't even men
tioned), may be found in the PRIMOS Commands Reference Guide.
Suppose you have a UFD called SALES in which you want to create the sub-UFDs East.Coast
and West.Coast. You also want both East.Coast and West.Coast to contain sub-UFDs named
North, Central and South. You also want the sub-UFD North in the sub-UFD East.Coast to
contain three further divisions: MAIN, BRANCH1, and BRANCH2. Here's how you would
do it:

OK, login sales
PRIMOS Version 17.2.5
SALES (49) LOGGED IN AT 17'33 021380

OK, listf

UFD=<MRKT02>SALES 1 OWNER

EAST.COAST WEST.COAST

OK, a *>east.coast
OK, create north
OK, create central
OK, create south
OK, a sales>west.coast
OK, create north
OK, create central
OK, create south

1 March 1980 4-4 FDR 3104

MORE PRIMOS 4

r

*

OK, a sales>east.coast>north
OK, create main
OK, create branchl
OK, create branch?
OK, a sales
OK, listf

UFD=<MRKT02>SALES 1 OWNER

EAST.COAST WEST.COAST

OK, a *>east.coast
OK, listf

UFD=<MRKT02>SALES>EAST.COAST 1 OWNER

NORTH CENTRAL SOUTH

OK, a *>north
OK, listf

UFD=<MRKT02>SALES>EAST.COAST>NORTH 1 OWNER

MAIN BRANCH1 BRANCH2

OK, a sales>west.coast
OK, listf

UFD=<MRKT02>SALES>WEST.COAST 1 OWNER

NORTH CENTRAL SOUTH

OK,

LOOKING AT YOUR FILES USING THE SLIST AND SPOOL COMMANDS
The SLIST and SPOOL commands allow you to look at a file in your current UFD (which
may be a sub-UFD).
The format of the SLIST command is:

SLIST filename
The SLIST command displays a file on your terminal. On a hard copy terminal, SLIST prints
your file on paper. It is most likely, however, that you are using a video terminal. If your file
is longer than one screenful, SLIST will flash it by faster than you can read it. To get around
this difficulty you can either:

• Examine your file with the EDITOR. See The Print Command in Section 3,
Essentials of Editor.

• Use CONTROL-S and CONTROL-Q to freeze the screen when using
SLIST, as described below.

First give the PRIMOS command TERM -XOFF which permits you to stop and start terminal
output on both video and hard-copy terminals via CONTROL-S (Stop terminal output) and
CONTROL-Q (Resume terminal output). This permits you to "freeze" a screen—in the
middle of an SLIST, for example—so you can examine a portion of your output before it
flows off the screen.

F D R 3 1 0 4 4 - 5 1 M a r c h 1 9 8 0

4 MORE PRIMOS

Other than CONTROL-Q, the only command you will be able to give after CONTROL-S is
a BREAK (CONTROL-P), which will QUIT you both out of CONTROL-S and out of whatever
you had been doing.
The command TERM -XOFF enables the use of CONTROL-S and CONTROL-Q. The
command TERM -NOXOFF disables them. NOXOFF is the default state.
If your system has a line printer, you may prefer to use the SPOOL command, particularly
if the file is long. This way you can avoid tying up a terminal while printing a long file. Line
printers are faster than terminals.
The SPOOL command orders a hard copy of your file to be printed out on the line printer
in the computer room. You will have to pick up the print-out when it is ready. The format of
the SPOOL command is:

SPOOL filename
When you give this command, PRIMOS makes a note of the filename in the spool queue list
for the line printer, and displays the message:

Your spool file PRTxxx, is n records long.

xxx is a 3-digit number that identifies your file in the spool queue list. The reason there is
a list, rather than just having each file SPOOLed out as the request comes, is that some
requests are very long—hundreds of pages. PRIMOS spools out the shorter files as soon as
possible, rather than make the users wait while the long files are printed.
You can check on the status of your SPOOL request, and get a list of those files in the spool
queue, by giving the command:

SPOOL -LIST
For example:

OK, spool -list
[SPOOL REV 17.2]

user prt time name size opts/J form defer at: CAROUSEL

FRANK 004 10:42 $INV-I WHITE
MARY 005 10:43 $INV-II WHITE
ROSEM 006 10:44 $SALESREP 10
ALBERT 007 11:11 $TERMSPEC 55 WHITE 0:12 1
FREDB 009 11:29 T$ALL 11 WHITE
BART 010 11:53 STAFFOUT 2 WHITE
NELSON 011 12:15 CODE WHITE

OK,

If, after having given the SPOOL command, for some reason you decide you do not want
your file to be spooled—for example, because you gave the wrong filename, or discovered
that you still have to correct or change something—you may cancel your spool request with
the command:

SPOOL -CANCEL PRTxxx
or

SPOOL -CANCEL xxx

1 March 1980 4-6 FDR 3104

MORE PRIMOS 4

where xxx is the number of your spool file. You will not be able to cancel a spool request in
the following situations:

1. If PRIMOS has begun spooling your file you will get the message:

File open on delete. It's printing. (SPOOL)

2. If your file is done SPOOLing, or you gave a non-existent PRT number,
you will get the message:

Not found. PRTxxx (SPOOL)

3. If you give the name of the file instead of the PRT number, you will get
the message:

Bad parameter, prtfilename (SPOOL)

The SPOOL command has two other useful options: DEFER and FORM.
Since the line printer is a shared resource for all computer users, you do not want to tie it
up unnecessarily for long periods of time during working hours. On the other hand, it is not
uncommon for users to have files several hundred pages long, which they want SPOOLed
out. Using a hard-copy terminal, of course, such a task would take all day; even on the line
printer, the job would tie up the printer for a long period of time.
The DEFER option tells the system not to SPOOL the file until after the indicated time: this
allows you to enter a SPOOL request at your convenience instead of waiting for the
appropriate hour.
You specify the DEFER option for the SPOOL command by using the format:

SPOOL filename -DEFER time
The hyphen (-) preceding DEFER is required!
The value for time can be expressed either in 24-hour time (00:00 = Midnight) or in 12-hour
time, followed by AM or PM (12:00 AM = Midnight). The format is HH:MM. where HH is
hours, : is any character, and MM is minutes.
Line printers usually print on paper which is "single copy" —commonly referred to as
"computer paper" or "print-out". However, there may be various other types of paper
available for use in the line-printer-for example, 5-copy sets, pre-printed forms (checks,
orders, invoices), special sizes or colors of paper.
You can request special forms using the FORM option for the SPOOL command by typing:

SPOOL filename -FORM form-name
form-name is any six-character (or less) combination of letters and numbers which the
person who runs the line printer recognizes as identifying one of the forms in stock. Your file
will be SPOOLed out when the appropriate form has been loaded into the line printer.
If you specify -FORM but omit form-name, you will get the message:

Illegal name. (SPOOL)
This example shows how to use the FORM option:

OK, spool $inv-iii -form white
[SPOOL REV 17.2]
Your spool file, PRT014, is 22 records long.

F D R 3 1 0 4 4 - 7 1 M a r c h 1 9 8 0

4 MORE PRIMOS

RENAMING AND DELETING FILES AND SUB-UFDS
The CNAME and DELETE commands allow you to rename and delete both files and sub-
UFDs.
The CNAME command allows you to change the name of a file or a sub-UFD. The format of
the CNAME command is:

CNAME old-filename new-filename
If you give a name for new-filename which already exists in your current UFD. PRIMOS
displays the message:

Already exists. NEW-FILENAME
ER!

If you misspell the old-filename, PRIMOS displays the message:

Not found. OLD-FILENAME
ER!

The DELETE command allows you to delete files and empty sub-UFDs. The format of the
DELETE command is:

D E L E T E I " ' ™
(sub-uid-name

You cannot delete a sub-UFD which contains files. To delete such a sub-UFD, you must first
delete each file in it. This procedure prevents you from accidentally wiping out a large
quantity of work in one unintended command; if you try to delete a sub-UFD which still
contains files, you will get the message:

The directory is not empty. DIRECTORY-NAME

SORT
The SORT command sorts a copy of a file, line by line, in alphabetic or numeric order. Refer
to the PRIMOS Commands Reference Guide, for full information.

THE DATE COMMAND
You can find out the current date and time by giving PRIMOS the DATE command. The
format of the DATE command is:

DATE
The date appears in this form:

Wednesday, February 13, 1980 2:18PM

THE CLOSE COMMAND
In order for you to use a file, PRIMOS must OPEN it for you (which it always does
automatically). The CLOSE command is used to close a file which may have been left open
unintentionally when you left EDITOR. RUNOFF, FUTIL, etc., via the BREAK key or a
CONTROL-P. The format for closing one file with the CLOSE command is:

CLOSE filename
The command to close all open files is:

CLOSE ALL

1 M a r c h 1 9 8 0 4 - 8 F D R 3 1 0 4

MORE PRIMOS 4

COPYING FILES WITH FUTIL
FUTIL is Reference a subsystem that manipulates files. Refer to the PRIMOS Commands
Reference Guide, for full information.

THE TERM COMMAND
You can use the TERM command of PRIMOS to change your ERASE and KILL characters,
and to select certain other terminal-related characteristics. See the PRIMOS Commands
Reference Guide.

r

~

F D R 3 1 0 4 4 - 9 1 M a r c h 1 9 8 0

The essentials of RUNOFF
INTRODUCTION
RUNOFF is Prime's text-processing system. It can turn a file like this:

"My dear Fortunato, you are luckily met. How
remarkably well you are looking

^ today. But I have received a p ipe of what passes
for Amontillado, and I have my doubts."
"How?" said he. "Amontillado? A pipe?

Impossible! And in the middle of the carnival!"

into an output file like this:

"My dear Fortunato, you are luckily met. How
remarkably well you are looking today. But I
have received a pipe of what passes for
Amontillado, and I have my doubts."

"How?" said he. "Amont i l lado? A pipe?
Impossib le ! And in the middle of the
ca rn i va l ! "

This example shows what RUNOFF can do even if you don't include any explicit commands:
• It breaks text into paragraphs. (In the absence of other commands.

RUNOFF assumes that a line beginning with a space is a new paragraph.)
• It packs irregular lines of text into uniform lines with a justified right

margin.

Unlike EDITOR, where you must explicitly state everything that you want done, RUNOFF
does a lot of work for you automatically unless you tell it not to. RUNOFF'S defaults include
setting up a standard page size, right-justifying your text, paragraphing a standard way. This
means that you don't have to know a lot about RUNOFF in order to use it.

F D R 3 1 0 4 5 - 1 1 M a r c h 1 9 8 0

5 THE ESSENTIALS OF RUNOFF

It only takes a few RUNOFF commands to format your output with headers, footers, and
indentation. You don't need any commands for paragraphing, pagination and right-justifi
cation. These happen automatically.
RUNOFF allows you to change output formats and see them without your having to retype
any text whatsoever—all you do is change a command or two. RUNOFF can generate
indexes, tables of contents, do decimalized headings, write a series of form letters inserting
a different name on each, and combine separate files of text and tables into one master
output file.
Using RUNOFF is a two-step process, and for this reason, this section is divided in two parts:
First, a basic explanation of how to create a RUNOFF source input file, using EDITOR. Next,
how to turn this source file into a processed output file.
This section will provide enough information to get you started with RUNOFF. Section 6,
More Runoff, explains additional commands to aid you in setting up formats and processing
files. Section 10, the Runoff Reference Section contains a complete alphabetized list of the
RUNOFF commands, with full explanations of how to use them.

CREATING THE SOURCE FILE
In order to process text, RUNOFF requires both text to process and commands specifying
how to process this text.
You have already learned how to make a file of text using EDITOR. Now you will learn how
to give the commands that tell RUNOFF what to do with this file.
These commands are called RUNOFF commands. You put RUNOFF commands directly into
your text file, using EDITOR, transforming it into a RUNOFF source file.
When you have finished creating your source file, you are ready to give the RUNOFF
command to PRIMOS. The RUNOFF command tells PRIMOS to start the RUNOFF program.
RUNOFF accepts your source filename, reads this source file, and processes the text
according to the commands. The results are placed into a RUNOFF output file. This output
file contains your formatted text, and can be SLISTed, SPOOLed, and/or EDITed. This
process is illustrated in Figure 5-1.

RUNOFF COMMANDS
RUNOFF commands control the way that RUNOFF processes the text of the source file into
the output file. Before we explain the basic RUNOFF commands, here's a brief discussion
of RUNOFF's command conventions.
A RUNOFF command consists of a period (.) followed by a command word, and possibly one
or more parameters:

.COMMAND parameter
The period: The period signifies that the line contains a command, which is to be obeyed, as
opposed to text, which is to be processed. The period must be in column one of the line.
Command words: A command word is a word which specifies an action. In this manual, the
minimum acceptable abbreviation of a RUNOFF command is shown in rust-colored letters.
For example: .PARAGRAPH could be abbreviated in any of the following ways: .P, .PAR,
.PARAGRAPH. Command words may be in either upper or lower case (or a combination).
Parameters: In RUNOFF, a parameter is either the name of a file, a number specifying a
line, column, page number, number of lines or columns, or a piece of text, depending on the
command. Numerical parameters are represented in the formats by:

• The letter i for a general number, usually of pages
• The letter m for a number of spaces
• The letter n for a number of lines

1 M a r c h 1 9 8 0 5 - 2 F D R 3 1 0 4

THE ESSENTIALS OF RUNOFF 5

USING EDITOR
CREATE A NEW FILE THAT CONTAINS

RUNOFF COMMANDS OR,
INSERT RUNOFF COMMANDS INTO

AN EXISTING FILE.
THIS IS YOUR SOURCE FILE

~

Figure 5-1. Using Runoff

FDR 3104 5-3 1 March 1980

5 THE ESSENTIALS OF RUNOFF

Some commands do not use parameters, some require them, and in others they are optional.
In this manual, parameters which are enclosed in brackets—e.g., [filename]—are optional.
If you omit them, RUNOFF will use the appropriate default value.
RUNOFF commands fall into the following categories:

1. Page-formatting - controls the physical layout of pages.
2. Line-formatting - controls the processing of words and lines of the input

text into lines on the formatted pages.
3. Output - specifies how to process the output file.
4. Characters and symbols - defines special characters and their meanings.
5. Features - indexing, tables of contents, decimalization.

Because of RUNOFF's built-in defaults, a text file containing no RUNOFF commands
whatsoever would be processed onto 8-1/2 by 11 inch pages as right-justified text. With the
addition of only a few commands, you can do paragraphing, indentation, headers and
footers, tabbing, and other basic formatting.

PAGE-FORMATTING COMMANDS
Page-formatting commands define the desired margins and physical size of the page, plus
headers, footers and page numbering.

Margins and page size
The default page size and margins are illustrated in Figure 5-2; if you
do not specify anything, you get this 8-1/2 by 11 inch page, containing 54 lines of 71 character
spaces each. The page margins are 7 spaces on the left and right sides, 7 lines on top, and 5
lines on the bottom. (The commands to change these defaults are described in Section 6,
More RUNOFF.)

Headers and Footers
You can set up one-line headers and/or footers centered in the top and bottom margins
respectively, by the commands:

.HEADER/left-text/center-text/right-text/
.FOOTER/left-text/center-text/right-text/

The headers and footers will start on the first new page after the command. Headers and
footers may contain left-justified, centered, and/or right-justified portions. All four de
limiters must be in each HEADER or FOOTER command, even if a text portion is left blank.
For example, center text only is created by .HEADER//center-text//
We have used the slash (/) as the delimiter in the description of all header and footer
formats, but you may use any character that does not appear in the text portions as the
delimiter. This is demonstrated by the examples in the Runoff Reference Section. The
placement of headers and footer is indicated on the default page illustration, Figure 5-2.

Page number
You can insert the current page number into the header or footer by using the pound sign #
to represent the current page number. For example, given this command:

.HEADER/UNIVERSAL MFG CORP/NEW PRODUCTS/Page §/
The twelfth page of the output file would have this header:

U N I V E R S A L M F G C O R P N E W P R O D U C T S P a g e 1 2

1 M a r c h 1 9 8 0 5 - 4 F D R 3 1 0 4

THE ESSENTIALS OF RUNOFF 5

HEADER (set via .HEADER, .OHEADER, or .EHEADER)
L e f t - t e x t C e n t e r - t e x t R i g h t - t e x t

TOP MARGIN - 7 lines, adjusted via .TMARGIN

Figure 5-2. RUNOFF Default Page

FDR 3104 5-5 1 March 1980

5 THE ESSENTIALS OF RUNOFF

You only need to specify a header or footer once. RUNOFF will print them on all subsequent
pages and update the page number automatically. These commands must appear before the
first text line of a page in order to be printed on that page.

LINE-FORMATTING COMMANDS
Now you've set up your page format. The next thing to do is to specify the general way you
want RUNOFF to process each word or line of text from the source file to the output file.
This is done with line-formatting commands.
There are two types of linj-formatting commands—general and local. General line-
formatting commands specify a manner of processing which is to stay in effect until you
specify otherwise. Local line-formatting commands affect only the text at the point where
the command occurs.

General line-formatting commands
General line-formatting commands, when given, stay in effect until you explicitly change
them. RUNOFF has five commands of this type—SPACE, TAB, and the three modes FILL,
ADJUST, and NFILL.
The mode commands insturct RUNOFF how to process the source file. There are three
modes:

• FILL mode - Fill each output line with words from the input file.
• ADJUST mode - Right-justify each filled line by adjusting interword

spacing.
• NFILL mode - Do not fill; transfer text line by line.

The command formats for these modes are:
.FILL
.ADJUST (default)
.NFILL

Since ADJUST mode is the default, you will automatically get right-justified output, unless
you specify otherwise.

FILL mode: FILL Mode produces a "ragged right" margin, and will fill each line with text.
If there are not enough words on the line, FILL will take words from the second line to fill
the first, and so on. FILL puts exactly one space between each word, and exactly two spaces
after a period, semicolon, exclamation point, question mark, and colon. If a right parenthesis
is preceded by any of these punctuation marks except the semicolon, it will also be followed
by two spaces.

ADJUST mode: In ADJUST mode, a line is first filled; then RUNOFF distributes extra
spaces across the line, wherever there are spaces, until the line touches both left and right
margins/This is also called "right-justified".

Note
The last line of a paragraph is neither ADJUSTed nor FILLed.

NFILL mode: In NFILL mode, RUNOFF transfers each line of text, exactly as it appears in
the source file, to the output file. All tabs are obeyed; all multi-column spaces are
maintained. NFILL mode is therefore useful in processing tables.

1 J a n u a r y . 1 9 8 1 5 - 6 F D R 3 1 0 4 (1 8)

THE ESSENTIALS OF RUNOFF 5

C

r

The following examples show how RUNOFF processes a sample source file. The source file:

.paragraph 5 1
"My dear Fortunato, you are luckily met. How
remarkably well you are looking
today. But I have received a pipe of what passes
for Amontillado, and I have my
doubts."
.paragraph
"How?" said he. "Amontillado? A pipe?
Impossible! And in the
middle of the carnival!"

is processed, in ADJUST mode, as right-justified text:

"My dear Fortunato, you are luckily met.
How remarkably well you are looking today.
But I have received a pipe of what passes for
Amontillado, and I have my doubts."

"How?" said he. "Amontillado? A pipe?
Impossib le ! And in the middle of the
ca rn i va l ! "

In FILL mode, the lines are filled with words, but not right-justified:

"My dear Fortunato, you are luckily met.
How remarkably well you are looking today.
But I have received a pipe of what passes for
Amontillado, and I have my doubts."

"How?" said he. "Amontillado? A pipe?
Impossible! And in the middle of the
c a r n i v a l ! "

RUNOFF always uses whichever of these three modes has been most recently specified. If
you do not specify a mode, the default, ADJUST, is used.
The other two general line-formatting commands are SPACE and TAB.
The SPACE command: The SPACE command defines the spacing between lines of print:
single-space, double-space, triple-space, and so forth. The format is:

.SPACE [n]

If n is omitted or 0, the default value of 1 (single-spacing) is used.

The TAB command: The TAB command defines the tab character and tab stop columns
relative to the current left margin for a file. RUNOFF and EDITOR perform tabbing
differently. EDITOR inserts the appropriate number of spaces into your file whenever the
current EDITOR tab symbol is entered. RUNOFF, however, ignores these spaces when
processing in FILL or ADJUST mode. You must explicitly tab in RUNOFF, requiring you to

F D R 3 1 0 4 5 - 7 1 M a r c h 1 9 8 0

5 THE ESSENTIALS OF RUNOFF

define both your tab character as well as your settings before you may use them. The format
of the TAB command is:

.TAB character tab-1 tab-2 . . .tab-20
Tab stops must be in ascending order, relative to the left margin. For example,

.tab @ 7 47 27

will produce an error message when you RUNOFF your file, because 47 is greater than 27.
In NFILL mode, RUNOFF recognizes all tabs (up to 20). In FILL and ADJUST modes, the tab
character is recognized only in those source lines beginning with a tab character.
In the following example, the tab character is defined as the @ character and the tab stops
are set in columns 7, 27, and 47.

.tab @ 7 27 47

. n fi l l
@In NFILL MODE@All(3tab
characters are@recognized
. a d j u s t
tin ADJUST @and FILL@Modes
tab @characters@are only recognized
if @one begins @ a line

processes to:

I n N F I L L M O D E A l l t a b
c h a r a c t e r s a r e r e c o g n i z e d

I n A D J U S T a n d F I L L M o d e s
tab @characters@are only recognized if @one begins
@ a line

Notice that in the last two lines of the RUNOFF input example, all @ symbols were ignored
as commands and were included as part of the text. In ADJUST and FILL modes, RUNOFF
only recognizes an input line's TAB characters as tabulation commands if one occurs in the
first column of the line. The tab character and the tab stops can be redefined at any point
in the source file. RUNOFF will use the most recent values given.
Tabs are primarily useful for formatting tables.

Local line-formatting commands
Local line-formatting commands have an effect only for lines on which they appear,
although they may also set a numerical value for a parameter which will be remembered.
Local line-formatting commands insert either a text line or a specified number of blank
lines.

. > text Center the following line of text.
,+text Enter exactly as written even if you are in .ADJUST or

.FILL modes,
./text/text/text/ Apportion text in left, center and right fields (like a header

or footer).
/text Omit text line (usually a comment) from the output file.

1 M a r c h 1 9 8 0 5 - 8 F D R 3 1 0 4

THE ESSENTIALS OF RUNOFF 5

r

The . > text format signals RUNOFF to center text on the line. This command is particularly
useful for titles and captions.
The .+text format tells RUNOFF to insert this line verbatim—i.e., exactly as it appears here.
This command permits you to override FILL or ADJUST mode for a single line.
The ./left-text/center-text/right-text/ format tells RUNOFF to apportion the pieces of text as
left-justified, centered, and right-justified portions of text. You may omit any of the text
portions, but must still give all four delimiters. The slash (/) is the only permissible delimiter
here. This means the slash may not be used as a text character in this line.
The .*text format tells RUNOFF to ignore this line completely. This permits you to insert
comments within your source file, to document what you have done at a given point.
Here's an example of these four commands: The source file:

.*This file contains RUNOFF line-insertion commands.
•>EXAMPLES OF LINE INSERTION
. + T h i s l i n e i n s e r t e d l i t e r a l l y .
./Left Piece/I'm the Middle/Right On/

processes to:

EXAMPLES OF LINE INSERTION
T h i s l i n e i n s e r t e d l i t e r a l l y .
L e f t P i e c e I ' m t h e M i d d l e R i g h t O n

BLANK LINES AND PARAGRAPH SPACING COMMANDS
The commands which insert blank lines are BREAK, SKIP, PARAGRAPH and EJECT. The
BREAK command tells RUNOFF to stop filling the current output line at once. The line is
ended, and not adjusted, no matter what mode you are in. The next text in the source file is
put onto a new output line. This action of breaking off the transferring of text to a line is
called a BREAK. Many RUNOFF commands, because of what they do, cause an automatic
break in the source file. This action of a break without there being a BREAK command is
called an implicit BREAK. All the line-insertion commands cause an implicit BREAK before
they are processed. The format of the BREAK command is:

.BREAK
The SKIP command does an implicit BREAK and then skips n printing lines. The format of
the SKIP command is:

.SKIP [n]
If n is pmitted, RUNOFF will skip 1 line.
For example, the source file:

These names of virtue, with
their precepts, were:
.skip 2
.>1. TEMPERANCE.
.skip 1
Eat not to dullness; drink not to elevation.
.skip 2
•>2. SILENCE.
.skip 1

? D R 3 1 0 4 5 - 9 1 M a r c h 1 9 8 0

5 THE ESSENTIALS OF RUNOFF

Speak not but what benefit others
other yourself; avoid trifling conversation
.skip 2
.>3. ORDER.
.skip 1
Let all your things have their places; let
each part of your business have its time.

processes to:

These names of virtue, with their precepts,
were:

1. TEMPERANCE.

Eat not to dullness; drink not to elevation.

2. SILENCE.

Speak not but what benefit others other
yourself; avoid trifling conversation.

3. ORDER.

Let all your things have their places; let
each part of your business have its time.

The PARAGRAPH command tells RUNOFF to do an implicit BREAK, and then indent m
spaces after skipping n printing lines. The format for the PARAGRAPH command is:

.PARAGRAPH [m] [n]
The original default values for rn and n are 0 spaces, 1 line. If no values are given, RUNOFF
will use the default values; however, specifying m and n values makes them the new default
values. The value of m can be positive or negative; for a full discussion, see How to do
Hanging Indents, in Section 8, Sample Sessions.
Here's an example of the PARAGRAPH command. The source file:

"...You were not to be found, and I was
fearful of losing a bargain."
.paragraph 5 1
"Amonti l lado!"
.paragraph
"I have my doubts."
.paragraph
"Amonti l lado!"

1 M a r c h 1 9 8 0 5 - 1 0 F D R 3 1 0 4

THE ESSENTIALS OF RUNOFF 5

r

-

.paragraph
"And I must satisfy them."
.paragraph
"Amonti l lado!"
.paragraph
"As you are engaged, I am on my way to Luchresi
If anyone has a critical turn it is he..."

processes to:

" You were not to be found, and I was
fearful of losing a bargain."

"Amont i l lado!"

"I have my doubts."

"Amonti l lado!"

"And I must satisfy them."

"Amonti l lado!"

"As you are engaged, I am on my way to
Luchresi. If anyone has a critical turn it is
h e . . . "

Note
In both FILL and ADJUST modes, if the first character of an
input line is a space, or if a line is preceded by a blank line
RUNOFF acts as if there were a PARAGRAPH command
there. This is known as implicit paragraphing.

The EJECT command signals the end of a page, in the same way that BREAK signals the end
of a line. The format of the EJECT command is:

.EJECT
The EJECT command does an implicit BREAK, and skips to the beginning of a new page.
There are several commands which do an implicit EJECT (which includes doing an implicit
BREAK). See .EJECT in Section 10, the RUNOFF Reference Section.

OUTPUT COMMANDS - THE TTY COMMAND
The TTY command causes RUNOFF to display the processed output file on your terminal.
If you have a printing terminal, you will get a "hard-copy" of the output file. The format of
the TTY command is:

.TTY
You must specify TTY if you want the output displayed as it is processed. It can appear
anywhere in your source file.
Now that you've learned the basic RUNOFF commands, you're ready to process your source
file by running RUNOFF.

F D R 3 W 4 5 - 1 1 1 M a r c h 1 9 8 0

5 THE ESSENTIALS OF RUNOFF

Here's a sample RUNOFF source file which uses all the commands that you have learned:

.*This file contains the yearly report of the
.*Magrathean Mfg. Corp.
. t t y
.header//MAGRATHEAN MANUFACTURING CORPORATION//
.footer//WE WILL CONTINUE TO TAKE PLANET ORDERS//
.sk ip
./Yearly Report//July, 2001/
.skip3
.+{{Summary}}
.tab @ 10 24 40
.paragraph 5 2
Although sales this year have not met with previous
expectations, our staff in Small Product Development have come
up with some real rousers which, we are pleased to
announce, should guarantee an upward-spiraling sales
trend for the year to come.
.paragraph
{{These new products include:}}
.skip
./Portable fjords/Humanoid Androids/Wide Beam Lasers/
./Cloned Pets/Faithful Biros/Sub-ether Radios/
./Electric Pencils/Photon Drive Cars/Artificial Night/
./Ultimate Mousetraps/Ersatz Sawdust/Portable Windmills/
. sk ip
.paragraph
{{The schedule of release is:}}
. sk ip
. n fi l l
@Quarter l@Quarter 2@Quarter 3
.sk ip
|Androids@Cloned Pets@Sawdust
@Fjords@Lasers@Windmills
@Pencils@Biros@Mousetraps
@ Rad io s@ Ca r s@N ight
.ad jus t
.paragraph
In addition, Magrathean Mfg. is introducing an entire
new line of products—Complete, tailored-to-order solar systems.

1 M a r c h 1 9 8 0 5 - 1 2 F D R 3 1 0 4

THE ESSENTIALS OF RUNOFF 5

RUNOFF processes it into:

MAGRATHEAN MANUFACTURING CORPORATION

Yearly Re^. July, 2001

Summary

Although sales this year have not met with previous expectations,
our staff in Small Product Development have come up with some real
rousers which, we are pleased to announce, should guarantee an
upward-spiraling sales trend for the year to come.

These new products include:

Portable fjords
Cloned Pets
Electric Pencils
Ultimate Mousetraps

Humanoid Androids
Faithful Biros

Photon Drive Cars
Ersatz Sawdust

Wide Beam Lasers
Sub-ether Radios
Ar t i fic ia l N igh t

Portable Windmills

The schedule of release is:

Quarter 1 Quarter 2 Quarter 3

Androids
Fjords
Pencils
Radios

Cloned Pets
Lasers
Biros
Cars

Sawdust
Windmills
Mousetraps
Night

In addition, Magrathean Mfg. is introducing an entire new line of
products—Complete, tailored-to-order solar systems.

WE WILL CONTINUE TO TAKE PLANET ORDERS

1 March 1980 5-13 FDR 3104

5 THE ESSENTIALS OF RUNOFF

RUNNING RUNOFF (PROCESSING YOUR SOURCE FILE)
Once you've put the desired RUNOFF commands into your source file, you are ready to
process the file through RUNOFF. The sequence for processing a source file is:

1. When you have finished EDITing your source file by inserting RUNOFF
commands, and are still in EDITOR, save this file by giving EDITOR the
FILE command. (Make sure you give a new filename, unless you are
willing to delete the previous file of the same name.

fi le form. le t ter

OK,

2. Give PRIMOS the RUNOFF command. This tells PRIMOS to get the
specified file and process it using RUNOFF. The format of the RUNOFF
c o m m a n d i s : ^ ^

RUNOFF filename
You may give the name of the file that you just finished EDITing, or the
name of any other file that contains RUNOFF commands. RUNOFF will
announce itself by displaying the word "RUNOFF" plus the version
number of RUNOFF which is on your system:

O K , r u n o f f f o r m . l e t t e r _
RUNOFF REV 17.2
COMMANDS
$

3. If you did not specify a filename when you gave the RUNOFF command,
RUNOFF will immediately ask for a source file:

INPUT FILE:
At this point, give the name of the file that you want processed. If you
misspell the filename—and RUNOFF cannot find any file by that name
in your current directory—you will be returned to PRIMOS with the ER!
prompt, and will have to give the RUNOFF command all over again.

4. Once RUNOFF finds the specified source file, it enters command mode,
which it indicates by displaying the word "COMMANDS" and the
Command Mode prompt, which is the dollar sign ($). You may now give
general RUNOFF commands directly from your terminal. Commands
entered in command mode are not put into your source file. When
entering commands in command mode, you need not use the period
preceding the command. RUNOFF will continue to issue the $ prompt
until you hit a carriage return without issuing a command on that line:

OK, runoff form.letter
RUNOFF REV 17.2
COMMANDS
$ header/Magrathean Manufacturing/New Products/page HI/
$ spaces 2
$
PROCESSING...

FDR 3104 5 _ 1 4 1 M a r c h 1 9 8 0

THE ESSENTIALS OF RUNOFF 5

5. In order to process your source file, RUNOFF needs to know the name of
the output file it is about to create. If you have not given an output
filename in the source file (see Output Options in Section 6), RUNOFF
asks for one:

ENTER OUTPUT FILE TREENAME:

You may specify an existing name, if you want to overwrite a previous
version. RUNOFF asks you to verify that you want to delete the previous
version by querying:

OK TO DELETE OLD FILENAME?

If you answer anything but YES, Y, YE, OK, etc., RUNOFF says:

NEW NAME:

6. RUNOFF will process the source file and create an output file. This
output file is placed in your current directory. If you give the TTY
command, it is displayed at your terminal. You can also inspect it via
EDITOR, SLIST, or SPOOL. If there are no command errors in your
source file, RUNOFF returns you to PRIMOS with an OK prompt.
(RUNOFF command errors are explained later.)

Here's a quick summary of the processing sequence:

1. Input, edit and file a source text file which includes RUNOFF commands,
using EDITOR.

2. Give PRIMOS the RUNOFF command.
3. If you did not give the name of the source file, do so in response to the

prompt INPUT FILE.
4. Give RUNOFF commands from your terminal, after the $ prompt, if

desired. Hit the RETURN immediately after the $ prompt to begin
processing.

5. Give name of output file, if not previously done via RUNOFF'S FILE
command.

6. SPOOL or SLIST your output file.
7. Inspect output file. If there were no command errors, proofread text. If

there were, return to source file and make command corrections, via
EDITOR.

The.sequence of processing might look like this on your terminal:

runoff f rogs
GO
RUNOFF REV 17.2
COMMANDS
$ tty
$ space 2
$
PROCESSING...

1 M a r c h 1 9 8 0 5 - 1 5 F D R 3 1 0 4

5 THE ESSENTIALS OF RUNOFF

RUNOFF COMMAND ERRORS
RUNOFF can detect errors which you make in giving RUNOFF commands. RUNOFF cannot
detect errors in your source text; this is processed exactly as it appears in your source file.
It's up to you to catch errors in spelling, punctuation, and grammar.
Command errors can occur either when you create your source file or when you are giving
commands in RUNOFF's command mode. The errors made in command mode are detected
instantly; those in the source file are detected when the line containing the error is
processed.
A few typical errors are:

• Typing a command (such as .P) and text on the same line.
• Forgetting closing delimiters in a command line
• Forgetting the period before a command.
• Unwanted implicit .PARAGRAPH caused by a blank line or by a space in

column 1.
Some of these errors cannot be detected by RUNOFF. For example, RUNOFF has no way to
discover that a dot is missing on a command.
RUNOFF has two kinds of command errors: illegal commands and unrecognized commands.

Illegal commands
Illegal commands are commands which RUNOFF can understand but not carry out. For
example, the commands .TAB @ 7 30 12 or .PARAGRAPH 300 can be interpreted, but the
values of the parameters are invalid.

Unrecognized commands
Unrecognized commands are commands which RUNOFF does not recognize. The typical
reasons for this are that you either misspelled a RUNOFF command word, or used a non-
RUNOFF command by mistake — e.g., ATTACH, WHERE, DUNLOAD.
RUNOFF calls to your attention any unrecognized commands by printing out the command
word followed by the message: UNRECOGNIZED at your terminal.
For both illegal and unrecognized commands, RUNOFF inserts the erroneous source line
into your output file. It places the erroneous line between a pair of blank lines, at the current
output line:

Pickeral Frogs are more aquatic than Leopard
Frogs. They like to stay in the neighborhood of
some large stream or body of water.

paragraph 200 1

Around the Great Lakes Region, Pickeral Frogs
represent perhaps 40
sect ions.

When RUNOFF detects a command error, after printing out the bad command and the error
message, it returns to RUNOFF command mode. Your choices at this point are:

• Type QUIT, and correct the error in the source file via EDIT.
• Type the correct command, plus a carriage-return to continue the pro

cessing. (This does not correct your source file.)
• Type a carriage-return to continue processing without correcting the error.

FDR 3104 5 _ 1 6 1 M a r c h 1 9 8 0

THE ESSENTIALS OF RUNOFF 5

r

r

In order to get an error-free output file, you will have to make the appropriate corrections
in the source file, by means of EDITOR. The only reason you might have for continuing to
process a source file once RUNOFF detects an error is to locate any further errors.
An output file which contains error messages will be useful only for determining the results
of your errors.
If RUNOFF detects any errors in your source file, it returns you to PRIMOS by this prompt:

***** ERROR(S) *****

instead of the regular "OK," prompt.

DONE: THE PROCESSED OUTPUT FILE
Now you're done. You've created a source file of text and RUNOFF commands, and
processed this file through RUNOFF to get an output file of formatted text.
All that remains for you to do is proofread your RUNOFF output — to see if the format suits
you and to make sure there aren't any spelling or formatting errors, etc. If you wish to make
any changes:

1. Give the ED command, plus the name of the source file.
2. Make appropriate changes in the source file.
3. FILE this, under the old name, or a new one.
4. Give the RUNOFF command, with the name of the corrected source file.
5. Check the new version of the output file.
6. Repeat steps 1-5 until you are satisfied.
7. Make a "hard" copy of the output file, either on the line printer via the

SPOOL command, or on a printing terminal by giving the TTY command
to RUNOFF or using the SLIST command.

8. Keep whichever of the source and/or output files you want; delete those
you do not want.

9. Check your current directory with a LISTF command to make sure you
have only those files you want.

10. You can now log out, or proceed to a new task.

1 M a r c h 1 9 8 0 5 - 1 7 F D R 3 1 0 4

More
RUNOFF

INTRODUCTION
Before you read through this section, you should be familiar enough with the material in
Section 5, THE ESSENTIALS OF RUNOFF, to use those basic RUNOFF commands without
any trouble.
This section explains the remaining RUNOFF commands, excluding those which deal with
tables of contents and decimalization (these are explained in Section 7). The commands are
grouped by function, and are explained sufficiently for you to be able to use them. If you
need more information about a particular command, consult the RUNOFF Reference
Section. The remaining commands fall into these categories:

• Page-formatting — specifies page size, margins, indentations, text columns,
and even and odd headers and footers.

• Output options controls the manner in which you get output.
• Special characters, symbols and conventions — controls RUNOFF's re

served characters, definable symbols, and underlining.
• Art and file-insertion — reserves space for art and tables, and allows

insertion of other source files into the output file.
• Indexing.

PAGE-FORMATTING COMMANDS
RUNOFF s page-formatting commands allow you to define any and all of the following:

• Length and width of physical page.
• Top, bottom, side and inter-column margins.
• Left and right indentation.
• Number of text columns per page.
• Different headers and footers for even and odd numbered pages.

Of course, you don't have to give any of these commands if you want to use the default
format of the page (Figure 6-1).

Page size commands
You can define the physical size of the page with these two commands:

LENGTH [n]
.WIDTH [m]

F D R 3 1 0 4 6 - 1 1 M a r c h 1 9 8 0

6 MORE RUNOFF

HEADER (set via .HEADER, .OHEADER, or .EHEADER)
L e f t - t e x t C e n t e r - t e x t R i g h t - t e x t

TOP MARGIN = 7 lines, adjusted via TMARGIN

Figure 6-1. RUNOFF Default Page

1 March 1980 6-2 FDR 3104

MORE RUNOFF 6

f

The LENGTH command defines the length of the physical page, including the top and
bottom margins, as n lines. If no value of n is specified. RUNOFF uses the default value of
66 lines. (At the standard of 6 lines = 1 inch, 66 lines = 11 inches.) The maximum length is
132 lines (22 inches).
The WIDTH command defines the width of the physical page, including the left and right
margins, as m spaces. If no value of m is specified, RUNOFF uses the default value of 85
spaces. RUNOFF works in pica spaces, which are 10 per inch. This is known as "10-pitch
type". Although you may be able to vary the type-pitch on certain hard copy printers,
RUNOFF always acts as if it were printing 10-pitch type. The maximum allowable page
width is 170 spaces (17 inches).

Remember, the WIDTH and LENGTH commands are defining the physical page size, not the
number of columns or lines RUNOFF will print on that page. To create wider or longer text.
add as many extra columns or lines you need per page to the default values of 85 and 66
respectively.
Both the WIDTH and LENGTH commands cause an implicit BREAK and EJECT. The default
page size is 8 1/2 by 11 inches.

Margin commands
You can define any of the margins on the page by means of these commands:

.TMARGIN [n]

.BMARGIN [n]
SMARGIN [m]
.CMARGIN [m]

The TMARGIN command sets the top margin to n lines from the top of the physical page. If
n is omitted, the default value of 7 lines is used.
The BMARGIN command sets the bottom margin to n lines from the bottom of the physical
page. If n is omitted, the default value of 5 lines is used.
The SMARGIN command sets the side margins (i.e.. left and right) to m spaces from each
side of the physical page. If m is omitted, the default value of 7 spaces is used.
The CMARGIN command can only be used when you have at least 2 columns of text on the
page. (See the COLUMNS command.) This command sets the inter-column margin — i.e.,
the number of spaces between columns — to m spaces. If m is omitted, the default value of
5 spaces is used.
All of the margin commands cause both an implicit BREAK and EJECT. The default margin
settings, if none of these commands are given, are:

1. Top = 7 lines
2. Bottom = 5 lines
3. Sides = 7 spaces
4. Inter-column = 5 spaces (if two or more columns of text are specified)

Indentation
The indentation command allows you to move the left and right margins individually and
temporarily. Indentation is always relative to the most recent setting. (Remember that your
tab settings will always be relative to the current left margin). The indentation commands
are:

.INDENT [m]

.RINDENT [m]

.UNDENT [m]

.RUNDENT [m]

F D R 3 1 0 4 6 - 3 1 M a r c h 1 9 8 0

6 MORE RUNOFF

The INDENT command moves the current left margin m spaces to the right. If m is omitted
or zero, RUNOFF indents by the default value of 5 spaces.
The RINDENT command moves the current right margin m spaces to the left. If m is omitted
or zero, RUNOFF uses the default value of 5 spaces.
The UNDENT command moves the current left margin by m spaces to the left. If m is
omitted or zero, RUNOFF resets the left margin back to the value specified in the most
recent SMARGIN command, or, if none was given, to the default margin of 7 spaces from the
side of the page.
The RUNDENT command moves the current right margin by m spaces to the right. If m is
omitted or zero, RUNOFF resets the right margin back to the value specified in the most
recent SMARGIN command, or, if none was given, to the default margin of 7 spaces from the
side of the page.

Columns of text
The COLUMNS command allows you to have more than one column of text on a page. The
format of the COLUMNS command is:

COLUMNS [i]
The default setting is one column of text per page. If you use COLUMNS to define more than
one column of text, the default margin between these columns is five spaces. This can be
changed via the CMARGIN command. The COLUMNS command causes both an implicit
BREAK and EJECT.
Here's an example of 2-column text:

An ancient Sage boasted, ministers who have the management
that, tho1 he could not fiddle, of extensive dominions, which
he knew how to make a great city from their very greatness are
of a litt le one. The science become troublesome to govern,
that I, a modern simpleton, am because the multiplicity of their
about to communicate, is the very affairs leaves no time for
r e v e r s e . fi d d l i n g .

I address myself to all

Page headers and footers
You can specify different headers and footers for the even and odd-numbered pages by
using the following commands:

.EFOOTER/left-text/center-text/right-text/

.EH EADER/left-text/center-text/right-text/

.OFOOTER/left-text/center-text/right-text/

. OH E ADER/lef t-text/center-text/right-text/
The rules for these commands are the same as for the HEADER and FOOTER commands:

1. Any character not in the text portions may be used as the delimiters.
2. Text portions may be omitted, however all four delimiters must appear in

a given command.
3. Each command affects all pages after it is given.

OUTPUT OPTIONS
Output-option commands determine what RUNOFF will do with the output file. These
choices include:

1 M a r c h 1 9 8 0 6 - 4 F D R 3 1 0 4

MORE RUNOFF 6

• Specifying a name for the output file, or having no output file.
• Processing only selected pages of the output file.
• Numbering the lines of the output.
• Pausing and/or perforating between each page of output.
9 Suppressing command error messages.

Output-option commands are usually given in RUNOFF'S command mode.

Naming the output file
The FILE command specifies the name of the output file, to which all subsequent text is
processed. This means that the FILE command must come before any text-formatting
commands and/or text in the source file. The format of the FILE command is:

.FILE [filename]

No output file
The NFILE command tells RUNOFF that you do not want any output file saved. The format
of this command is:

.NFILE
RUNOFF processes the source file, but does not save the results. This command has little
use, except when you are also giving the TTY command.

Processing selected pages
The FROM and TO commands permit you to select a specific range of pages to be processed
from a longer source file. The format of these commands is:

.FROM [i]
•TO [j]

You may give either, both or none of the FROM and TO commands.
If you give the FROM command, page i of the processed output will be the first page
displayed and/or filed. If you do not give the FROM command, RUNOFF begins with
pagel.
If you give the TO command, page j will be the last page of the processed output to be
displayed and/or filed. If you do not give the TO command, RUNOFF will continue until the
entire source file has been processed.
If you have reset the page numbering by means of the PAGEN command, RUNOFF
compares the specified number(s) against this page count; otherwise, RUNOFF compares
them against the sequential page count. (The page number need not physically appear on
the pages to use FROM or TO.)
For example:

OK, runoff section2
GO
RUNOFF REV 17.2
COMMANDS
$ from 2
$ to 4
$
PROCESSING...

OK,

F D R 3 1 0 4 6 - 5 1 M a r c h 1 9 8 0

6 MORE RUNOFF

Numbering the lines of output
The SOURCE command tells RUNOFF to put line numbers which correspond to lines in the
source file by the side of the output file lines. The format of the SOURCE command is:

.SOURCE [n]
When the SOURCE command is given, RUNOFF begins generating a list of line numbers one
space to the right of the right margin of the output file. Each number corresponds to a non-
blank text line from the source file; command lines from the text file, as they do not appear
in the output file, are not numbered. If you are producing multi-column text, each column
will have corresponding line numbers to the right of it.
Each line number is n greater than the previous one. If the value of n is 1 or omitted, the line
numbers increase by 1. If you specify a value of zero for n, RUNOFF stops inserting line
numbers.

BLOCKS OF TEXT, ARTWORK AND INSERTED FILES
RUNOFF has commands which allow you to reserve groups of lines on pages for blocks of
text or artwork, plus commands which allow you to insert text from other source files.

Blocks of text
There are two RUNOFF commands that reserve space on the page for text which cannot be
split between two pages. These commands are:

.NEED [n]

.WIDOW [n]

The NEED command indicates that n lines must appear in a continuous group on the page.
When RUNOFF processes a NEED command, it immediately checks to see if there are n
lines left on the page before the bottom margin. If so, then RUNOFF proceeds as usual. If
there are less than n lines remaining, RUNOFF does an immediate BREAK and EJECT,
putting n lines of text at the beginning of a new column or page. If n is zero or omtted, the
default value of 1 is used.
The WIDOW command permits you to specify a minimum number of lines in a paragraph
which may appear at the bottom of a page.
While the NEED command is local, WIDOW is general. Once you give the WIDOW
command, RUNOFF checks the text for the bottom n+1 lines of each page of output before
finishing the processing of the page. If there is a BREAK, SKIP or PARAGRAPH command
in the corresponding source text, RUNOFF does an EJECT just before such commands, and
continues processing the text on a new page.

Artwork
The PICTURE command allows you to reserve blank lines in a continuous block. This is
particularly useful if you plan to insert items into your document which cannot be produced
by RUNOFF. This includes artwork, drawings, tables set in different type, and examples.
The format of the PICTURE command is:

.PICTURE [n]
The n in this command always refers to physical lines — not n times the current value of
SPACE. When RUNOFF encounters a PICTURE command, it checks to see if n lines remain
on the page. If so, RUNOFF fills the current output line, if you are in FILL mode, or fills and
adjusts the line if you are in ADJUST mode. It then does a BREAK and SKIPs n physical
lines.

1 M a r c h 1 9 8 0 6 - 6 F D R 3 1 0 4

MORE RUNOFF

If n physical lines are not available on the page, RUNOFF continues to process text, and
SKIPs n physical lines at the top of the new page before continuing to process text. If n is
larger than the total number of physical lines between the top and bottom margins. RUNOFF
skips additional lines and/or pages until all n lines are skipped. The default value of n is one
line.
You can specify more than one PICTURE request at a time. RUNOFF keeps track of up to ten
values of n at the same time, and attempts to put one per page in the order that each
PICTURE was specified. Each page is filled with text below the reserved space.

Inserting files
RUNOFF has two special commands which allow you to use additional source files to create
a single output file. The commands which insert other source files are INSERT and FLOAT.
The INSERT command inserts an entire file at the place where the command is given.
FLOAT inserts an external file where the space is available, like PICTURE. INSERT and
FLOAT are explained fully in Ihe Runoff Reference Section.

SPECIAL CHARACTERS, SYMBOLS AND CONVENTIONS
Like EDITOR, RUNOFF has a number of special characters with specific functions. There
are commands to change the value of most of these reserved characters. RUNOFF's special
characters, plus their defaults and meanings, are:

N a m e D e f a u l t M e a n i n g
BLANK CONTROL-^ Required single blank
E R A S E E r a s e p r e v i o u s c h a r a c t e r (C o m m a n d m o d e

only)
HYPHEN RUBOUT Permissible hyphenation point
K I L L ? E r a s e (K i l l) e n t i r e l i n e (C o m m a n d m o d e

only)
PAGEN § Current page number (headers and footers

only)
SYCHAR % Delimits symbol-names in text. Enter l iteral

SYCHAR by inputting two in a row (%%)
TAB none Move to the next "tab stop", (relative to the

left margin)
The commands to change the value of reserved characters are BLANK, ERASE, HYPHEN,
KILL, SYCHAR, and TAB. The page number character cannot be changed.
In general, a symbol may be used to define only one action at a time. For example, the page
number character [§) may not be defined as the BLANK character because it is already
being used to define page numbers.
The BLANK command resets the value of the blank character. Each blank character
indicates a required space in the source file and indicates words which must not be broken.
These blanks are neither suppressed nor padded during FILLing and ADJUSTing. The
formats for the BLANK, ERASE and KILL commands are:

.BLANK character

.ERASE character

.KILL character
RUNOFF's default settings for the ERASE and KILL characters are the same as those used
by PRIMOS and EDITOR - unless, of course, they have been changed on your particular
computer or you have changed them with PRIMOS's TERM command. The default value of
the erase character is the double-quote ("); the default value of the kill character is the
question-mark (?). These two characters can be used only in RUNOFF's command mode.
They have no special meaning when they occur as part of your source file. You may give the
value-changing commands ERASE and KILL within your source file.

FDR 3104 6-7 1 March 1980

MORE RUNOFF

Note
Once you have changed either of these two characters, you
cannot return them to the default setting within the RUNOFF
session. They will be reset when you leave RUNOFF.

The format for the HYPHEN command is:
.HYPHEN character

This command defines the value of RUNOFF's phantom hyphen. The phantom hyphen can
be used to indicate places where RUNOFF may hyphenate a given word of text if the word
is too long to fit on an output line. See the Runoff Reference Section for more information.
The SYCHAR command defines the delimiter for symbol-names, which are explained in the
following paragraphs. The format for the SYCHAR command is:

.SYCHAR character
The default value of character is the percent sign (%).

Defining and using symbols
There may be occasions when you want to leave a "hole" in a document which you intend
to fill in later. This "hole" could be a page number which refers to a section you have yet to
write, the address and name of a customer, the date, or many other things.
RUNOFF allows you to leave such "holes" in your source file, and gives you a way of
labeling each of these so that you can define the contents of the missing material elsewhere
in your source file, or in command mode. You can label each place to be filled in by means
of symbols.
Each symbol has a name and a value. You insert the name enclosed in percent signs, at the
appropriate place in your source file. You define the value of the symbol either in command
mode or within the source file prior to the use of the symbol-name. RUNOFF inserts the
specified value of a symbol in the output file whenever its name appears in the source file.
You define the name and value of each symbol by means of the DEFINE command. The
format of this command is:

.DEFINE symbol-name value
Whenever RUNOFF finds symbol-name enclosed in a pair of percent signs in your source
file, it replaces it in the output file, with the corresponding value as defined by a DEFINE
command. The value may be text, a parameter, or even a command.
For example, the source file statements:

.define NAME Arthur Ingrid

.+Dear %NAME%,

will be processed as:

Dear Arthur Ingrid,

See Inserting Addresses on Form Letters in Section 8.
The rules for defining symbols are as follows:

1. RUNOFF distinguishes between upper and lower case letters in symbol-
names. This means that, TITLE, Title, and title are different symbol-
names.

1 M a r c h 1 9 8 0 6 - 8 F D R 3 1 0 4

MORE RUNOFF 6

2. The name of a symbol may be of any length: however, RUNOFF looks
only at the first six letters. This allows you to use longer names for your
own reference, but note, for example, that the names: Expedite and
Expedition would appear to be the same, (Expedi).

3. You cannot use commas, parentheses or spaces in a symbol-name.
4. The symbol-value may contain up to 30 characters. If a symbol definition

is over 30 characters, RUNOFF will print a warning message and flag the
error, but will continue to process text.

5. You may have up to sixty different symbols defined at a given time. If you
need additional symbols, you may redefine an existing symbol-name
whose old value is not longer needed, via the DEFINE command. You can
undefine one or all symbols without giving new values with the UN-
DEFINE command. (See the RUNOFF Reference Section for details.)

6. You may redefine the delimiting character with the SYCHAR command.
To insert a literal percent-sign in the text — e.g., 959< pure — type two percent-signs
together: 95%% pure.
Pre-defined Date Symbol-names: RUNOFF has two special symbol-names.%DATE. 1% and
%DATE.2%, whose values are predefined. Each one is replaced by the current date, as
known by PRIMOS.
%DATE.1% is replaced in the output file by the current date in the format mm dd yy. (For
example, 1 0 25 84.)
%DATE.2% is replaced in the output file by the current date in the format Month Day. Year.
(For example, September 12, 1984.)
Remember that RUNOFF distinguishes between upper and lower case letters in symbol-
names. 9VDate.1% is not equivalent to 9'<DATE.1%.
Also, remember that RUNOFF inserts the current date at the time the source file is
processed. If you SPOOL the output file at a later date, the dates are not updated. For
example, a file processed on September 12, 1984 will contain that date. If you spool that
output file on November 3.1984, the date inserted by % DATE.2% will still be September 12,
1984. To get an output file with the new date, you will have to RUNOFF the source file again.

Special conventions
RUNOFF has special conventions to cover two particular text-formatting circumstances:
beginning a line with a period, and underlining.
Initial text periods: Since a period at the beginning of a line signifies a RUNOFF command,
you need a special way to indicate that you want a text line to begin with a period. You do
this by typing two periods in a row; RUNOFF process this pair as a single text period which
begins a line of text in the output file.
So, for example, the lines:

.. insert four

..para

process to:

.insert four

.para

Underlining: RUNOFF permits you to underline any portion of a line of text. A pair of left
braces (|)) indicates the beginning of text to be underlined; pair of right braces (jj) indicates
the end.

F D R 3 1 0 4 (1 8) 6 - 9 1 J a n u a r y . 1 9 8 1

6 MORE RUNOFF

For example:

{{Underline me}}

processes to:
Underline me

RUNOFF allows you to underline, in addition to standard words, sentences, lines and
paragraphs:

• Punctuation marks
• Parts of words
• Centered text
• Headers, footers, and apportioned text
• Blanks
• Decimal headings

Note
You cannot underline RUNOFF commands. This means you
must be careful not to enclose any commands within the
double braces when underlining multiple lines of text.

Headers, footers, and apportioned text can be underlined by portion:
./||text!(/text//

or completely - the entire line:
./ff text/text j}/

For the second case, the outer delimiters must enclose the double braces.
For example:

.header/{{Monthly Report/MAGRATHEAN MFG CORP/Pageft}}/

processes to:

M o n t h l y R e p o r t U N I V E R S A L M F G C O R P P a g e 1

You can underline blanks in any of the following ways:

1. In any mode, use the blank character within the braces, e.g.,

.blank &
{{&&&&&}}

2. In NFILL mode, use regular or reserved blanks, e.g.,

{ { } } o r { { & & & & & } }

3. In either mode, use the underscore character (._), not inside braces.
If you want to enter a pair of left or right braces literally into your output file, i.e.. \\ or }},
type a phantom hyphen between the two braces in your source file.

1 M a r c h 1 9 8 0 6 - 1 0 F D R 3 1 0 4

MORE RUNOFF 6

r

The phantom hyphen character is set by the .HYPHEN command, described in Section 10.
For example, the source file:

.hyphen &
{&{l'm enclosed in literal double braces}&}

processes to:

{{I'm enclosed in literal double braces}}

The default for the phantom hyphen is the rubout key.
Note

1. If your terminal does not format underlined text properly when you use
RUNOFF's TTY command, then you should SLIST the output file instead.
A separate line containing the underline characters will be printed
below the text to be underlined.

2. On Diablo keyboards, the codes control-left-parenthesis and control-
right-parenthesis generate the left and right braces, respectively.

3. If you have underlined a decimal heading (see Section 7). the decimal
label number will also be underlined, unless an extra space is between
the decimal heading command and the text of the heading.

INDEXING
RUNOFF has two commands which permit you to build a file of index notes: the IXFILE
command, whch defines the name of the file, and the INDEX command, which indicates
items in your source file to be noted. The format of the IXFILE command is:

.IXFILE filename

This defines the name of the index file. The format of the INDEX command is:
.INDEX string

If you have given the IXFILE command, RUNOFF compiles a list of all strings given in the
INDEX commands, together with the page numbers of the output page that RUNOFF was
processing when each INDEX command was encountered. Note that this is not a proper
index — you still have to alphabetize this list, and condense multiple entries to a single
occurrence of string plus all its page references.
If you have given at least one INDEX command in your source file, but no specified IXFILE,
RUNOFF asks for the name of the index file with the prompt:

FILENAME FOR INDEX:

You may give a filename, or else hit RETURN. The latter tells RUNOFF that you do not want
an index file this time; RUNOFF will ignore all further INDEX commands in the file. (You
can specify no index file via the NIXFILE command.) See the RUNOFF REFERENCE
SECTION for more information on these commands.

Pausing and/or perforating
RUNOFF has two commands which have an effect between pages of output. The format of
these commands is:

.PAUSE

.PERFORATE [n]

F D R 3 1 0 4 6 - 1 1 1 M a r c h 1 9 8 0

6 MORE RUNOFF

The PAUSE command tells RUNOFF to pause at the end of each page of the output file until
you type a character at the terminal. This permits you to adjust the paper in a hard-copy
terminal, which is useful if you want to run a file off on separate sheets of paper, instead of
on the continuous sheets which many terminals use. Typing any character signals RUNOFF
to process another page; we recommend a non-printing character (such as RETURN), which
does not leave a mark on the paper.
The PERFORATE command causes RUNOFF to print a line of hyphens, which are meant to
act as perforation marks, at the place where the physical bottom of the paper should be. This
helps to indicate where new pages begin on long rolls of paper output. See .PAUSE and
.PERFORATE in Section 10 for further details.
The PAUSE and PERFORATE modes can be turned off with the commands:

.NPAUSE

.NPERFORATE
respectively.

Suppressing RUNOFF command error messages
As a rule, you will want to know where in your source file you have made RUNOFF
command errors. There will be times when you want RUNOFF to process your source file
without stopping to display error messages. The command:

.ERRGO
tells RUNOFF to suppress all error messages as well as the associated actions, and instead
process the entire file. The output file will include the results of any errors that occur.
This method of using RUNOFF is primarily useful when you are processing a file as a -^K
phantom user - i.e., you have told the computer to RUNOFF a file during a period of time
when you are not going to be at the terminal, and therefore cannot correct and continue
processing as errors occur.
The command:

.NERRGO
returns RUNOFF to its default mode of displaying error messages and then returning to
command mode.

1 M a r c h 1 9 8 0 6 - 1 2 F D R 3 1 0 4

RUNOFF decimalization
WHAT IS DECIMALIZATION?
If you have ever written an outline for a paper, you will recall that this outline divided the
contents of the paper into sections and subsections, and that each piece could be uniquely
identified. For example, in the outline:

BREEDING FROGS FOR PLEASURE AND PROFIT

I. INTRODUCTION
A. History

1. Ancient
2. Recent
3. Rain of Frogs - Myth or Reality?

B. Why Frogs
II. HOW TO RAISE FROGS

A. Location
B. Schedule
C. Schedule
D. Weather

The information on Recent History is contained in the second division of Part A in Sec
tion I.
Decimalization is another way to divide and label the various portions of your documents.
In decimalization, you use numbers — i.e., 1,2,5,32. etc. — to mark successive sections, and
the numbers indicating different levels of organization are separated by decimal points
(hence the name "decimalization").
Using decimalization, the above outline would become:

1 INTRODUCTION
1.1 History

1.1.1 Ancient
1.1.2 Recent

F D R 3 1 0 4 7 - 1 l M a r c h 1 9 8 0

7 RUNOFF DECIMALIZATION

1.1.3 Rain of Frogs - Myth or Reality?
1.2 Why Frogs

2 HOW TO RAISE FROGS
2.1 Location
2.2 Housing
2.3 Schedule
2.4 Weather

Each paragraph and heading is uniquely identified by a number and decimal point
combination called a decimal label.

2 is a label for a first-level block of text
2.1 is a label for a second-level block of text
2.1.6 is a label for a third-level block of text
2.1.6.2 is a label for a fourth-level block of text

The major function of decimal labels is to permit you to identify any portion of a document
without reference to a page number. This is particularly useful when you want to insert
cross-references in a document for which the final page numbers are not known.
Many people like to use decimal labels in their documents because it clarifies the
relationships between various sections. This method is common in military documentation
and engineering specifications.
Figure 7-1 shows a sample page of decimalized text. Notice that you can put decimal labels
on both headings and paragraphs.

USING RUNOFF TO DO DECIMALIZATION
If you were typing your document "by hand" instead of using RUNOFF, and wanted to
decimalize it (i.e., insert decimal headings), you would have to keep track of all your various
level numbers, plus the values, and possibly the appropriate indentation as well. With
RUNOFF's decimalization features, all you have to do is enter RUNOFF commands where
you want a decimal label. RUNOFF automatically inserts the proper values.
RUNOFF also enables you to make changes in your decimalized document without any
additional work. You can add or delete paragraphs, move sections around, combine
chapters, rearrange the entire source file if you wish — so long as you've got the right
commands in the new source file, RUNOFF does the new decimal labels correctly. In
addition, once you have inserted the decimalization commands into your source file, you can
have RUNOFF generate a paginated table of contents based on the decimal labels.
You can also use RUNOFF's decimalization commands to format your document, but
suppress printing of actual numbers.
Specifying decimal labels is a two-step process:

1. Define the format parameters at beginning of source file — numbers of
lines to skip and amount of indentation for each level of decimal
headings.

2. Insert commands throughout the text, wherever you want decimal labels.

You can insert decimalization commands either as you create the source file, or edit them
into an existing source file. When you give the RUNOFF command, RUNOFF creates,
increments and formats the decimal labels and accompanying text the way you have
indicated.

1 M a r c h 1 9 8 0 7 - 2 F D R 3 1 0 4

RUNOFF DECIMALIZATION

r
FROG RAISING FOR PLEASURE AND PROFIT

1 HISTORY OF THE FROG INDUSTRY

1.1 What Has Held Frog Raising Back?

Frog farming is perhaps America's most needed, yet least developed,
industry. What has prevented its normal progress? Why aren't frog
farms as common as poultry farms? (All indications show that frogs
are just as popular as food as chickens.) The frog industry has
been a "victim of circumstances," and here are the things that have
held it back:

1.1.1 SKEPTICISM:

It is difficult for people to accept any new thing. The
possibilities in frog raising amazed many persons, and they
thought "it just couldn't be." These people required a
leader to go first—to "show them" what could be done—then
they willingly follow.

1.1.2 JEALOUSY:

Frog raisers who were successfull guarded their secrets.
They seemed to want to be the only one raising frogs in
the i r sect ion. Today most f rog ra isers know that
cooperation with their fellow frogs raisers brings NEW
knowledge to themselves too.

1.1.3 LACK OF PROPER .INSTRUCTIONS:

Until recently there was no way to learn how to raise frogs.
You just had to "experiment" for yourself without help,
assistance, or even interest from anyone else. After you
finish this book, consider whether or not you ever could be
successful without the knowledge contained herein.

1.1.4 FEEDING PROBLEMS:

Some persons put frogs in ponds and expect them to "make
their own food." They knew nothing about what they ate, nor
how to raise the frogs. How could they expect to succeed?

1.1.5 CANNIBALISM:

Amateurs who simply put a few pairs of breeders in a pond
never seemed to get any young. Their frogs ate them as fast
as they hatched. Today cannibalism is no longer a problem.
You will learn in future lessons how simple it is to avoid
i t .

Figure 7-1. Decimalized Text

FDR 3104 7-3 1 March 1980

7 RUNOFF DECIMALIZATION

FORMAT PARAMETERS
Format parameters are the values you can set for each level of decimal headings, controlling
the indentations and line-skipping. Figure 7-2 illustrates the four parameters you can set.
which are:

• before-skip - the number of lines to skip before the label is printed
• after-skip the number of lines to skip after the label is printed
• head-indent - the number of spaces to indent the label from the current left

margin
• text-indent - the number of spaces to indent the text which follows the

label, from the current left margin (including head-indent)

You can set these values individually for each level, or generally for all levels of decimal
labels. If you do not explicitly set any of the four parameters, RUNOFF uses the following
defaults:

• Skip two lines before and one line after each label.
• Indent labels three additional spaces; indent text zero spaces more.

Figures 7-3 and 7-4 illustrate a page of text with default decimalization settings.

2.7 MAINTENANCE INSTRUCTIONS FOR POWER CELL

S With proper care, the power cell on the light saber
I (LSB/6832) shall last for 325.6 years. This section
| includes instructions applicable to the power cell.

before-skip

2.7.1 Testing Level of Charge
after-skip

Pressing Area B (See Fig. VI-4A) on the
handle activates the charge check. Read
charge level by comparing green charge dot to
ground and minimum marks. (Charge level for
activated light saber may be obtained by
monitoring audio hum frequency.)

Figure 7-2. The Four Decimalization Parameters

LEVELS
In this section, we talk about "levels". Usually (but not always) a level appears as an amount
of indenting. Figure 7-2 shows two levels: 2.7 (second level) and 2.7.1 (third level). We will
talk about going "down" from second to third, and "up" from third to second level. Think of
going "down" into the indentation, and coming back "up" to the left margin.
Notice that you go down from 2 to 3 and up from 3 to 2. This may not be the way you would
expect things to work, but that's how RUNOFF's decimalization levels are defined.

1 March 1980 7-4 FDR 3104

RUNOFF DECIMALIZATION 7

.*This document contents a decimalization example using FROGS

.ds 0 1 1

.as 4 i 0

.di 3 3 5

.h//FR0G RAISING FOR PLEASURE AND PROFIT//

.sk

.dn HISTORY OF THE FROG INDUSTRY

.dd {{What Has Held Frog Raising Back?}}
Frog farming is perhaps America's most needed,
yet least developed industry. What has prevented its
normal progress? Why aren't frog farms as common as poultry
farms? (All indications show that frogs are just as
popular as food as chickens.) The frog industry has been a
"victim of circumstances," and here are the things that have
held it back:
.dd SKEPTICISM AND JEALOUSY
.dd {{Skept ic ism:}}
It is difficult for people to accept any
new thing. The possibilities in frog raising amazed many persons, and
they thought "it just couldn't be." These people required
a leader to go first—to "show them" what could be done—then they
wi l l ing ly fo l low.
.dn {{Jealousy:}}
Frog raisers who were -successfull guarded their secrets.
They seemed to want to be the only one raising frogs in their section.
Today most frog raisers know that cooperation with
their fellow frogs raisers brings NEW knowledge to
themselves too.
.du
.dn LACK OF PROPER INSTRUCTIONS:
Until recently there was no way to learn how to raise
frogs. You just had to "experiment" for yourself without help,
assistance, or even interest from anyone else. After you finish this
book, consider whether or not you ever could be successful
without the knowledge contained herein.
.dn FEEDING PROBLEMS:
Some persons put frogs in ponds and expect them to
"make their own food." They knew nothing about
what they ate, nor how to raise the frogs. How could
they expect to succeed?
.dn CANNIBALISM:
Amateurs who simply put a few pairs of breeders in
a pond never seemed to get any young. Their frogs
ate them as fast as they hatched. Today cannibalism
is no longer a problem. You will learn in future
lessons how simple it is to avoid it.
.du
.dn {{Discovery of Frog Meat As A Delicious Food}}
The frogs industry began when man discovered the delicious taste
of tender, white frogs legs. This happened centuries ago in
Europe. The story has it that a monk was walking in a
monastery garden when he espied a
greenfrog in the clutches of the unmerciful jaws
of a snake. Tne monk couldn't stand such a sight, so he dispatched a q

Figure 7-3. Runoff source with default decimalization settings

FDR 3104 7-5 1 March 1980

7 RUNOFF DECIMALIZATION

FROG RAISING FOR PLEASURE AND PROFIT

1 HISTORY OF THE FROG INDUSTRY

1.1 What Has Held Frog Raising Back?

Frog farming is perhaps America's most needed, yet least developed
industry. What has prevented its normal progress? Why aren't frog
farms as common as poultry farms? (All indications show that frogs
are just as popular as food as chickens.) The frog industry has
been a "victim of circumstances," and here are the things that have
held it back:

1.1.1 SKEPTICISM AND JEALOUSY

1.1.1.1 Skepticism: It is difficult for people to accept
any new thing. The possibilities in frog raising amazed
many persons, and they thought "it just couldn't be."
These people required a leader to go first—to "show
them" what could be done—then they willingly follow.

1.1.1.2 Jealousy: Frog ra isers who were successfu l l
guarded their secrets. They seemed to want to be the
only one raising frogs in their section. Today most frog
raisers know that cooperation with their fel low frogs
raisers brings NEW knowledge to themselves too.

1.1.2 LACK OF PROPER INSTRUCTIONS:

Until recently there was no way to learn how to raise frogs.
You just had to "experiment" for yourself without help,
assistance, or even interest from anyone else. After you
finish this book, consider whether or not you ever could be
successful without the knowledge contained herein.

1.1.3 FEEDING PROBLEMS:

Some persons put frogs in ponds and expect them to "make
their own food." They knew nothing about what they ate, nor
how to raise the frogs. How could they expect to succeed?

1.1.4 CANNIBALISM:

Amateurs who simply put a few pairs of breeders in a pond
never seemed to get any young. Their frogs ate them as fast
as they hatched. Today cannibalism is no longer a problem.
You will learn in future lessons how simple it is to avoid
i t .

Figure 7-4. Default Decimalization Output

1 March 1980 7-6 FDR 3104

RUNOFF DECIMALIZATION 7

Notice also that "down" and "up" do not mean "down and up the page" but in and out levels
of indentation.

FORMAT COMMANDS
The two commands which set values for the format parameters are DSKIP and DINDENT.
The DSKIP command specifies the number of lines to be skipped before and after each label
of level-number. The format of the DSKIP command is:

.DSKIP) level-number I before-skip [after-skip]

If the value of level-number is an asterisk (*), RUNOFF assumes that the command applies
to labels of the next lower level. If the value of level-number is zero,the DSKIP command
sets the skip values for all levels of labels except those that are explicitly defined following
such a command in your text. For example, if you expect to have four levels of labels in your
text, and want to skip five lines before each label and two lines after, then the following
DSKIP sequences are equivalent:

.dskip 15 2 .dskip 15 2

.dskip 2 5 2 .dskip * 5 2

.dskip 3 5 2 .dskip * 5 2 .dskip 0 5 2

.dskip 4 5 2 .dskip * 5 2

Unless the value of after-skip is zero. RUNOFF does a BREAK after printing the decimal
label. If the value of after-skip is zero. RUNOFF does not do this BREAK; text follows the
label on the same line. This permits you to begin paragraphs with a decimal label. If the
value of before-skip or after-skip is -1, RUNOFF EJECTS to a new page.
The DINDENT command specifies the amount to indent labels and text from the current left
margin. The format of DINDENT command is:

.DINDENT level-number level-indent [text-indent]
If the value of level-number is an asterisk (*), RUNOFF assumes that the command applies
to labels of the next lower level than the current one. For example, if you are currently on
level 2, the command DINDENT * 5 8 applies to level 3.
If the value of level-number is zero, the DINDENT command sets the indent values for all
level of labels in your text except level 1, for which label-indent is always 0 unless
specifically overridden by a level 1 DINDENT command.

.dindent 10 0

.dindent 2 5 0-

.dindent 3 8 2

would produce, given an initial left margin of 10
• Level 1 labels indented 10+0=10 spaces

following text indented 10 + 0=10 spaces
• Level 2 labels indented 10+5=15 spaces

following text indented 15+0=15 spaces
• Level 3 labels indented 15+8=23 spaces

following text indented 23+2=25 spaces
Unless you have explicitly set the indentations for level 1 (e.g., DINDENT 15 3), RUNOFF
will not indent level 1 labels or text. The command DINDENT 0 5 2. for example, will cause
decimalization indenting to begin with level 2.

F D R 3 1 0 4 7 - 7 1 M a r c h 1 9 8 0

7 RUNOFF DECIMALIZATION

WAYS TO GENERATE DECIMAL LABELS
You can generate a decimal label:

• On the same level as the previous label.
• One or more levels up from the level of previous label.
• One level down from the level of the previous label.

On its line, each label can be followed by a one-line heading, the text, or nothing. You can
also generate a heading or block of text, without the decimal label, on the same or lower
level as the previous label.
The commands which generate decimal labels are DNEXT and DDOWN.
The commands which generate headings or text with the specified spacing and indentation
but without decimal labels are DDSUPPRESS and DNSUPPRESS.
You can explicitly set both the current level-number and the value of the current decimal
label via the DUP, DLEVEL and DRESET commands.
The heading in all the commands is optional. If the value of after-skip is zero at the current
level, the source text will continue on the same line; otherwise, it will cause a BREAK. •
The DNEXT command generates a new label on the current level. The format of the DNEXT
command is:

.DNEXT [heading]
For example, if the most recent label and heading was 2.2 Life Cycle, the command .dnext
Mating Season produces the label and heading:

2.3 Mating Season

The DDOWN command generates an new label one level below the current level. The
format of the DDOWN command is:

.DDOWN [heading]
For example, if the most recent label and heading was 2.3 MATING SEASON, the command
.ddown Tropical Climates produces the label and heading:

2.3.1 Tropical Climates

LEVEL-RESETTING COMMANDS
The DUP and DLEVEL commands reset the level of the labels you are generating. Their
major use is to go "up" — return to a higher level from a lower (for example, to return to
level 2 from level 5). The DUP command is a "relative" command — it moves you a given
number of levels from where you are. The DLEVEL command is an "absolute" command —
you specify what level you want, without regard to the level you are on at the time.
In other words, if your most recent label is level 5, and you want to return to level 2, you can
get there either by saying "go up 3 levels" or "go to Level 2".
The DUP command resets the level value up by a specified number of levels; the next
DNEXT command you give will generate a label at the new level. The format of the DUP
command is:

.DUP [n-levels]

If n-levels is zero or omitted, the default value of one is used; the current level is reset up
1 level (i.e., from 2 to 1, from 3 to 2, from 4 to 3, etc.).
If n-levels is greater than the current level, the level is reset to level 1 (the top level).

1 M a r c h 1 9 8 0 7 - 8 F D R 3 1 0 4

RUNOFF DECIMALIZATION 7

r

This command does an implicit BREAK and resets the indent and skip values to those of the
new level.

.dnext
t e x t . . .
.dup
.dnext

The DLEVEL command resets the current level to a new level. Text following a DLEVEL
command will be indented to the setting for the new level. A DNEXT command following a
DLEVEL command will, of course, generate a label on the new level. The DLEVEL command
also does an implicit BREAK. The format of the DLEVEL command level is:

.DLEVEL [level]
If the value of level is zero or omitted, the default value of one is used — the level value is
reset to one (first level).
The DRESET command allows you to specify the next number value for a specific level in
the next label. This command is almost always used for the current level. For example, if the
most recent label is 2, you can specify that you want the next Level One label to be 6. This
is particularly useful if you must leave sections out of a document — or if you want to begin
a document, say, on Chapter 6. The format of the DRESET command is:

.DRESET [level] [value]
The DRESET command resets a specified level to a new value. (Actually, the number at that
level is set to one less than value.) Since the DNEXT command generates a label whose
value on the current level is one more than the current value, the next value on the current
level will be:

value - 1 + 1 = value
However, this means that if the current level is not the same as level, you will get an
incorrect label when you give the DNEXT command. For example:

Your most recent label was 1.2.7
Your current level is 3
You want the next label to be 5 (level 1, value 5)

This is what you don't want to do:

.dreset 1 5

.dnext

Doing that would give you the label 4.2.8. You want to do it one of these ways:

.d rese t 1 5 .d rese t 1 5 .dup 2 .d leve l

.dup 2 or .dlevel 1 or .dlevel 1 5 or.dreset 1 5

. d n e x t . d n e x t . d n e x t . d n e x t

If omitted when the DRESET command is given, the default value for level and value is one.
GENERATING UNLABELED HEADINGS AND PARAGRAPHS
The DNSUPPRESS and DDSUPPRESS commands have the same indenting and skipping
effects as DNEXT and DDOWN; they do not generate decimal labels, but do alter the current
count. If no heading is specified, the text follows after the appropriate number of skipped
lines.

F D R 3 1 0 4 7 - 9 1 M a r c h 1 9 8 0

7 RUNOFF DECIMALIZATION

The DNSUPPRESS command generates an unlabeled heading on the current level. The
format of the DNSUPPRESS command is:

.DNSUPPRESS [heading]
The DDSUPPRESS command generates an unlabeled heading one level down from the
previous level. The format of the DDSUPPRESS command is:

.DDSUPPRESS [heading]
For example:

.dnsup PORPOISE-HUMAN VOCODERS

.ddsup Basic Vocabulary and Expressions

processes to
PORPOISE-HUMAN VOCODERS

Basic Vocabulary and Expressions

MISCELLANEOUS INFORMATION YOU SHOULD KNOW

Decimal Range
RUNOFF produces labels with up to 8 levels. The largest value you can have on any one
level is 99. The largest decimal value, therefore, is 99.99.99.99.99.99.99.99 (most documents
seldom require more than four levels).

Space between two labels not separated by text
If there is no text between two labels (same or different levels), RUNOFF will still skip the
number of printing lines specified by after-skip following the first label, and then the
number of lines specified by before-skip preceding the second label.

Widow prevention
RUNOFF will not print a label at the bottom of a page unless there is room for at least one
line of text below it.

Keeping track of indenting
When using decimalization, the command UNDENT or UNDENT 0 will undent to the left
margin setting for the current level instead of the page margin defined by SMARGIN.
Be sure to UNDENT any additional indentations set by INDENT before changing levels or
starting new paragraphs.

Underlining labels and headings
If you are underlining the heading after a decimal label:

• One space between the DNEXT/DOWN command and the left brackets
will underline both label and heading; e.g.:

.dn {{LABEL AND HEADING UNDERLINED}}
becomes

4.2.1 LABEL AND HEADING UNDERLINED
• Two spaces between the DNEXT/DDOWN command and the left brackets

will underline only the heading; e.g.:
.dn {{HEADING ONLY}}

becomes
4.2.1 HEADING ONLY

1 M a r c h 1 9 8 0 7 - 1 0 F D R 3 1 0 4

RUNOFF DECIMALIZATION 7

r

GENERATING A TABLE OF CONTENTS
If your source files contains decimalization commands, RUNOFF can automatically gener
ate a table of contents from the labels and put it into a specified file. You generate a table
of contents file by including the TOFC command in your source file.
With this command, RUNOFF produces a table of contents entry each time it encounters a
DNEXT, DDOWN, DNSUPPRESS, or DDSUPPRESS and/or TTOFC command in the source
file. The table of contents entry consists of a decimal heading number, the value for heading
(if any), periods out to the right margin, and the page number on which the heading appears.
If the heading is too long to fit on one line, it will be split at a space and continued, indented,
on the following line. For example:

I N T R O D U C T I O N 1
1 . 1 O v e r \ / i e w 1
1 . 2 T e r m i n o l o g y 3

. 1 . 2 . 1 R e s e r v e d W o r d s 4
G E T T I N G S T A R T E D P R O C E D U R E S 7
2 . 1 S y s t e m C o m m a n d s 1 3
EXPLANATION OF A HEADING WHICH IS TOO LONG

L O N G T O F I T O N O N E L I N E 1 7

The format of the TOFC command is:
.TOFC filename [level]

If a value is given for level, RUNOFF includes all labels through this level. For example, if
you give a value of 3, your table of contents lists all labels (and headings) of levels 1, 2. and
3.
If filename already exists, you will get the message:

OK TO DELETE OLD filename?

Any response except YES. YE, Y, OK or O will produce the message:

NEW NAME:

Format of the table of contents file
When you give the TOFC command, RUNOFF creates a file containing the following
RUNOFF commands:

.TMARGIN current-value Specify top margin

.BMARGIN current-value Specify bottom margin

.SMARGIN current-value Specify side margins

.WIDTH current-value Specify paper width

.LENGTH current-value Specify paper length
.BLANK current-value Specify Special Blank Character
. N F I L L E n t e r N F I L L m o d e
. C O L U M N 1 S i n g l e C o l u m n
.DSKIP 0 0 0 Skip no lines before or after entry, except,
.DSKIP 110 Skip one l ine before level 1 entr ies.
.DINDENT 0 0 3 Indent 3 after all levels, except, level 1
.DINDENT 10 2 Indent 2 after level 1 entry
.DINDENT 2 0 4 Indent 4 after level 2 entry

F D R 3 1 0 4 7 - 1 1 1 M a r c h 1 9 8 0

7 RUNOFF .DECIMALIZATION

.DINDENT 3 0 6 Indent 6 after level 3 entry
.DLEVEL 1 Go to decimal heading level 1
.DRESET 1 Reset to heading value 1
. E J E C T E j e c t t o n e w p a g e
. S K I P 2 S k i p 2 l i n e s
. > ||Table of Contents!!
. S K I P 2 S k i p 2 l i n e s

The settings for the various current-values are the values most recently defined in the
source file prior to the TOFC command, or, for those commands not given, the appropriate
default values. This guarantees that your table of contents will look the same as the rest of
the output.
In other words, if your source file contains the sequence:

.tmargin 10

.bmargin 2
.smargin 15
.tofc contents

Your table-of-contents source file would have these margin settings and the default page
size; the file contents would have this sequence:

.tmargin 10

.bmargin 2

.smargin 15

.width 85

.length 66

The TOFC command must follow the page-formatting commands in your source file in order
for RUNOFF to pass the values on.

The DSKIP and DINDENT commands in filename determine the SKIP and INDENT values
for the various levels in the table of contents. You can, of course, change any and all of these
values before processing the TOFC file with RUNOFF.
The DLEVEL and DRESET commands re-initialize the current level to first-level, and the
current value to one. This is done so you can INSERT the table of contents source file into
your main source file, for processing at the same time. Without these commands, the table
of contents file would be processed with the most recent left margin and level values.
The EJECT command makes sure the table of contents starts on a new page; then get the
underlined title, Table of Contents, two blank printing lines, and then the table of contents
itself.
Remember: If the TOFC command is not in the main source file, you can redefine any and
all of these settings by changing/inserting RUNOFF commands at the top of the file with
EDITOR — and a finished table of contents source file can be INSERTed at any point in your
main source file.

1 M a r c h 1 9 8 0 7 - 1 2 F D R 3 1 0 4

RUNOFF DECIMALIZATION 7

The TTOFC command
The TTOFC (To Table of Contents) command lets you enter text strings which are not
headings into the table of contents. The format of the TTOFC command is:

TTOFC string
The value of string is inserted at the appropriate place in the table of contents file. String is
indented to the current level setting; underscored characters are still underscored.

The DLIMIT command
The DLIMIT command lets you reset the level of decimal labels (and pertinent headings! to
be entered into the table of contents file. The format of the DLIMIT command is:

.DLIMIT [limit]
limit defines the highest level of label to be entered into the table of contents file; for
example, if the value of limit is 3. then only level one, two and three labels will be entered.
You can change the value of limit as often as you like.

r

Turning off contents generation
To omit certain decimal labels and associated headings from the table of contents file, use
the two commands:

.TOFC 0

.TOFC 1
When RUNOFF encounters TOFC 0 (off), it will stop processing all following decimal labels
and headings to the TOFC file until it encounters TOFC 1 (on). RUNOFF will ignore the
TOFC 0 and TOFC 1 commands if you are not currently making a table of contents.

RUNOFF DECIMALIZATION COMMAND SUMMARY
A summary of all RUNOFF decimalization commands follows:

.DDOWN [heading]

.DDSUPPRESS [heading]

.DINDENT level label-indent
[text-indent]

.DLEVEL level

.DLIMIT [limit]

.DNEXT [heading]

.DNSUPPRESS [heading]

.DRESET level value

.DSKIP level before-skip
after-skip

.DUP [n-levels]
.TOFC filename [limit]

Go down one level and generate a label.
Go down one level but do not print a label.
Set indent increment for level to label-
indent and text-indent spaces.
Define the level at which numbering con
tinues.
Reset maximum level of label to be entered
in TOFC file.
Generate a label (and heading) on the cur
rent decimal level.
Generate a heading on the current decimal
level, but do not generate a label.
Change the current level number to level
and set the next number on this level to
value.
For each label on specified level, skip
before-skip lines before the label and after-
skip lines after it.
Decrement the level number by n-levels.
Generate a table of contents in filename. If
the limit is specified, only labels down to
that level are recorded in the contents.

1 March 1980 7-13 FDR 3104

7 RUNOFF DECIMALIZATION

.TOFC

.TOFC 0

.TTOFC string

Close the current table of contents.
Temporarily turn off the generation of the
table of contents and at .TOFC 1, turn it on
again.
Enter string in TOFC file.

FDR 3104 7-14 1 March 1980

Sample sessions
INTRODUCTION
This section explains and demonstrates the more advanced features of EDITOR and
RUNOFF. The features covered are:
In RUNOFF

• Document formatting
• How to do hanging indents
• Form letters

In EDITOR
• Using GMODIFY
• Using MOVE
• Using XEQ

DOCUMENT FORMATTING
The following is a suggested method for formatting multi-section documents.
Due to the six-character limit on symbol-names, the following abbreviations or conventions
have been selected:

SUBJCT For the name of the document
DOCNO For the number of the document
VERSNO For the number of the version or revision
PUBDAT For the date of publication
TITLE For the section title
SECNO For the number of the section

The file GLOBAL.INFO contains the information pertinent to all sections of a given
document. Use EDITOR to change the letters W, X. Y and Z to the appropriate values. You
can also define one or more groups of standard tab stops here.
Here is one possible example of a GLOBAL.INFO file:

.♦GLOBAL.INFO—contains general formatting information

.define SUBJCT FROGS

.define DOCNO 2001

.define VERSNO REV 3

F D R 3 1 0 4 8 - 1 1 M a r c h 1 9 8 0

8 SAMPLE SESSIONS

.define PUBDAT 10/12/80
.*FIVES, TENS, and TABLE1 are for convenience in setting tabstops.
.define FIVES 5 10 15 20 25 30 35
.define TENS 10 20 30 40 50
.define TABLEI 5 15 18 33 56

GLOBAL.INFO gets inserted into the file SECTION.INFO. The file SECTION.INFO sets up
headers, footers, and output filename. This file gets inserted at the beginning of each
section. You could type it in each time, but it is quicker and more practical to INSERT it.

.*SECTION.INFO—sets up section format

.insert GLOBAL.INFO
.eheader/SECTION %SECNO%/%SUBJCT%//
.efooter/VERSION %VERSNO%/Page %SECNO% - |//
.oheader//DOC %DOCNO%/%TITLE%/
.ofooter::Page %SECNO% - lh%PUBDAT%:
.file $SECTION.%SECNO%
.sk2
.>SECTION %SECNO%
.sk
•>%TITLE%

Then, stait each section like this:

.*This file contains SECTIONxx
.define SECNO x
.define TITLE text of title
.insert SECTION.INFO
.skip 10
.tab @ %FIVES%
t e x t

Then, if you have set up GLOBAL.INFO properly, running off a section gives you pages
formatted as shown in Figure 8-1. Figure 8-2 shows the file arrangement for this method of
document formatting.

HOW TO DO HANGING INDENTS
RUNOFF permits you to specify either positive or negative indentation at the beginning of
paragraphs. Positive indentation is the more traditional — the first word of text is indented
m spaces to the right of the current left margin, like this:

You might ask, "Why do you recommend not
l ess t han five pa i r s o f b reede rs t o
beginners? We urge you to get as many pairs
as possible to start out with because it
gives you a better chance to succeed.

1 M a r c h 1 9 8 0 8 - 2 F D R 3 1 0 4

SAMPLE SESSIONS 8

DOCU 2001

SECTION 1

In t roduc t ion

In t r oduc t i on

1 HISTORY OF THE FROG INDUSTRY

1.1 What Has Held Frog Raising Back?

Frog farming is perhaps America's most needed, yet least developed
industry. What has prevented its normal progress? Why aren't frog
farms as common as poultry farms? (All indications show that frogs
are just as popular as food as chickens.) The frog industry has
been a "victim of circumstances," and here are the things that have
held it back:

1.1.1 SKEPTICISM AND JEALOUSY

1.1.1.1 Skepticism: It is difficult for people to accept
any new thing. The possibilities in frog raising amazed
many persons, and they thought "it just couldn't be."
These people required a leader to go first—to "show
them" what could be done—then they willingly follow.

1.1.1.2 Jealousy: Frog raisers who were successfull
guarded their secrets. They seemed to want to be the
only one raising frogs in their section. Today most frog
raisers know that cooperation with their fellow frogs
raisers brings NEW knowledge to themselves too.

1.1.2 LACK OF PROPER INSTRUCTIONS:

Until recently there was no way to learn how to raise frogs.
You just had to "experiment" for yourself without help,
assistance, or even interest from anyone else. After you
finish this book, consider whether or not you ever could be
successful without the knowledge contained herein.

1.1.3 FEEDING PROBLEMS:

Some persons put frogs in ponds and expect them to "make
their own food." They knew nothing about what they ate, nor
how to raise the frogs. How could they expect to succeed?

1.1.4 CANNIBALISM:

Amateurs who simply put a few pairs of breeders in a pond
never seemed to get any young. Their frogs ate them as fast
as they hatched. Today cannibalism is no longer a problem.
You will learn in future lessons how simple it is to avoid
i t .

Page 1 - 1

Figure 8-1. Page Formatted by GLOBAL.INFO

Oct. 12, 1980

FDR 3104 8-3 1 March 1980

8 SAMPLE SESSIONS

GLOBAL.INFO

SECTION.1

.•this file contains SEC

.*This document content:

.define SECN3 1

.define TITLE Introducti

.insert section.info

.ds 0 1 1

.ds 4 1 0

.di 3 3 5

.h//FROG RAISING FOR PLE

.Sk

.dn HISTORY OF THE FROG

SSECTION.1

1 HISTORY OF THE FROG IN

1.1 What Has Held Fr

Frog fanning is perha
industry. What has

RUNOFF

SECTION.2

."this file contains SEC 1

.•Thin document contents 1

.define SECNO 2 1
.define TITLE Digging yc 1
. i nse r t sec t ion . in fo j
. d s 0 1 1 !
. d s 4 1 0 |
. d i 3 3 5 I
.h//FROG RAISING FOR PLE 1
. s k j
.dn POND SITE SELECTION

SSECTION.2

1 FOND SITE SELECTION

1.1 Don't Try to Pit

It shouldn't be ncce:

Figure 8-2. File Arrangement for Document Formatting

Negative, or hanging, indentation means the first word of text begins m spaces to the left of
the current left margin — specified as -m spaces. For example:

You might ask, "Why do you recommend not
less than five pairs of breeders to
beginners? We urge you to get as many
pairs as possible to start out with
because it gives you a better chance to
succeed.

Hanging indents (a common nickname for negative indentation, are often used for for
matting lists. To start a new block of text without beginning a new paragraph, use the SKIP
command. When preparing to do hanging indents, be sure to:

1. INDENT the left margin appropriately, keeping in mind that each
paragraph will begin m spaces to the left of this new margin. (Also
RINDENT the right margin, if desired.)

2. Set the negative indentation with the PARAGRAPH command.
3. Reset the left margin (and right, if changed) after the last entry in the list,

using UNDENT.

1 March 1980 8-4 FDR 3104

SAMPLE SESSIONS 8

4. Reset the PARAGRAPH values (if resetting to the default values, you can
give the NPARAGRAPH command, otherwise you must give the reset
values in the next PARAGRAPH command.)

Also consider using the BLANK character between the item number, if any, and the first
word. The BLANK character prevents RUNOFF from inserting justification spaces between
such numbers and the text which would give the appearance of an uneven text margin. (The
default for BLANK is CONTROL-fe.) For example, the source file:

.*This file demonstrates a list with hanging indents

.wi 65

.blank &

.p 5 1
The benefits of having good water vegetation
by your frog pond are:
.in 8
.p-3 1
l.&It gives oxygen to water. Without enough
oxygen, only a small number
of frogs could be raised in a small pond.
•P
2.&Keeps the water fresh. Water in which proper
plants grow remains fresh regardless of age. It
smells sweet and clear.
• P
3.&Helps to keep the water cool in summer.
•P
4.&Provides cover for frogs and water life
while in the water. Many larval
insects thrive in the properly planted pond.
.un
.p 5 1
Bank vegetation also serves many functions
in the frog pond...

processes to:
The benefits of having good water vegetation

by your frog pond are:

1. It gives oxygen to water. Without enough
oxygen, only a small number of frogs could
be raised in a small pond.

2. Keeps the water fresh. Water in which
proper plants grow remains fresh regardless
of age. It smells sweet and clear.

3. Helps to keep the water cool in summer.

4. Provides cover for frogs and water life
while in the water. Many larval insects
thrive in the properly planted pond.

Bank vegetation also serves many functions in
the frog pond...

F D R 3 1 0 4 8 - 5 1 M a r c h 1 9 8 0

8 SAMPLE SESSIONS

Negative indentation can also be used to format two-column tables when the second column
contains justifiable text.
For example:

,*This file contains a negative indent table
.blank &
Following are listed some of the controllable conditions and their
effect on the tadpoles:
. s k
.indent 23
.p -13 0
DEEP&WATER&&&&&&&&Tadpoles living in deep water
ponds, where they cannot come into contact
with a sloping bank, will usually remain in the
tadpole stage twice as long.
.sk
•P
SUDDEN&WATER&&&&&&Cold water retards the
•P
TEMPERATURE&&&&&&&development of and growth
•P
CHANGES&&&&&&&&&&&of tadpoles, just as it does with frogs,
.sk
•P
UNBALANCED&DIET&&&Contrary to other forms of life,
overfeeding causes tadpoles to grow fast, but
keeps them in the tadpole stage for a much longer
period.

processes to:

Following are listed some of the controllable
conditions and their effect on the tadpoles:

DEEP WATER

SUDDEN WATER
TEMPERATURE
CHANGES

Tadpoles l iving in deep
water ponds, where they
cannot come into contact
with a sloping bank, will
u s u a l l y r e m a i n i n t h e
tadpole stage twice as
long.

Cold water retards the
development of and growth
of tadpoles, just as it
does with frogs.

UNBALANCED DIET Contrary to other forms of
l i fe, overfeeding causes
tadpoles to grow fast, but
keeps them in the tadpole
stage for a much longer
period.

1 March 1980 8-6 FDR 3104

SAMPLE SESSIONS 8

To simulate justification of initial lines in each paragraph, use EDITOR to insert blank
characters as needed. (If no paragraph has more than one line in the first column, you can
use the command PARAGRAPH -xx 1 and will not have to watch for this.)

INSERTING ADDRESSES ON FORM LETTERS
Suppose you want to RUNOFF a group of form letters, each with a different name and
address, such as this:

The Raniburger Corporation
666 Ouroboros Drive
Arkham, Mass. 01914
April 3, 1978

Arthur Trent
13 Diablo Drive
Wallingford, Pa. 19380

Dear Arthur Trent,

It is our pleasure to inform you, Arthur
Trent, that you are a FINAL CONTESTANT in the
RANIBURGER BAKE-OFF!

Raniburger is prepared to fly you, at your
expense, to our BIG BAKE-OFF, which will be
broadcast live from the Hotel Cthulhu in downtown
Arkham. Winners will be selected by our panel of
distinguished judges, which includes Drs. Ann E.
Lidda and Chuck Render of the Serpentine Health
Spas, and Grima Viper of Saruman Bakeries. Prizes
include a two-week vacation for two at Loch Ness,
plus a year's supply of Raniburgers.

So, congratulations, Arthur Trent, and we
hope to see you soon!

Sincerely,

The Raniburger Corporation

Rather than create and RUNOFF a new source file for each address, here's away to do all
these letters giving the RUNOFF" command only once, assuming you have a uniform address
file, such as:

Arthur Trent
13 Diablo Drive
Wallingford. PA. 19380

Mildred Saurus
5507 Burney Blvd.
Phoenix, Arizona 85031

F D R 3 1 0 4 8 - 7 1 M a r c h 1 9 8 0

8 SAMPLE SESSIONS

The method described in this section requires that all addresses have exactly the same
number of lines. You can overcome this limitation by having one file for three-line
addresses, a second for four-line addresses, etc., or by making all addresses the maximum
number — making sure that you include enough blank lines to fill the shorter addresses to
this length.
Suppose, for example, you have a file LIST containing three-line addresses, separated by
blank lines, like the one above. You also have a source file LETTER, which has the symbol-
names SYMB-1, SYMB-2, and SYMB-3 where you want the three lines of an address to
appear (plus SYMB-1 wherever you want the name to appear in the text) such as:

.*This file contains a sample form letter

.*RANIBURGER Finalists Form Letter

.tab @ 20

. n fi l l

.footer//"I never Ate A Frog I Didn't Like"//
@%DATE.2%
. s k
%SYMB-1%
%SYMB-2%
%SYMB-3%
.sk2
Dear %SYMB-1%,
. fi l l
.p 5 1
It is our pleasure to inform you, %SYMB-1%,
that you are a FINAL CONTESTANT in the RANIBURGER BAKE-OFF!
•P
Raniburger is prepared to fly you, at your expense,
to our BIG BAKE-OFF, which will be broadcast live from
the Hotel Cthulhu in downtown Arkham.
Winners will be selected by our panel of distinguished
judges, which includes
Drs. Ann E. Lidda and Chuck Render of the Serpentine
Health Spas, and Grima Viper of Saruman Bakeries.
Prizes include a two-week vacation for two
at Loch Ness, plus a year's supply of Raniburgers.
•P
So, congratulations, %SYMB-1%, and we hope to see you soon!
.sk
@Sincerely,
.sk
@The Raniburger Corporation
.e jec t

What you want to do is convert the address lines into the symbol-values assigned by SYMB-1,
SYMB-2, and SYMB-3 by RUNOFF DEFINE commands. You also want to have the command
INSERT LETTER follow each address. To make these changes in LIST, use EDITOR as
follows:

1. Use the CHANGE/Vstring/ format of the CHANGE command to insert
the characters .def SYMB-n at the front of each address line.

2. Insert the line .insert LETTER after each address.

1 M a r c h 1 9 8 0 8 - 8 F D R 3 1 0 4

SAMPLE SESSIONS 8

For example:

r

.*This file shows how to change addresses, one at a time
OK, ed list
GO
EDIT
next
Arthur Trent
c//.def SYMB-1 /
.def SYMB-1 Arthur Trent
n
13 Diablo Drive
c//.def SYMB-2 /
.def SYMB-2 13 Diablo Drive
n
Wallingford, Pa.19380
c//.def SYMB-3 /
.def SYMB-3 Wallingford, Pa.19380
i .insert LETTER
t,p6
.NULL.
.def SYMB-1 Arthur Trent
.def SYMB-2 13 Diablo Drive
.def SYMB-3 Wallingford, Pa.19380
.insert LETTER
n
Mildred Saurus
c//.def SYMB-1 /
.def SYMB-1 Mildred Saurus
n
5507 Burney Blvd.
c//.def SYMB-2 /
.def SYMB-2 5507 Burney Blvd.
file main

OK,

A quick and easy way to make these changes on the entire file LIST is to use EDITOR'S
* ("Repeat") command. Typing this command line:

c//.def SYMB-1 /;n;c//.def SYMB-2 /;n;c//.def SYMB-3 /;i .inser LETTER;n2;*

will alter the entire LIST file properly. Simply position the pointer at the first line of the first
address, and type the above command line. You may want to give the BRIEF command first,
to eliminate unnecessary and possibly time-consuming verification printouts. It is important
that you do not omit the spaces between the symbol-names and theclosingdelimiters (e.g.,
SYMB-1). See Asterisk Constructions below.
FILE the results of this editing with a new name (to avoid writing over the actual list). The
edited file, here called MAIN, should look like this:

F D R 3 1 0 4 8 - 9 1 M a r c h 1 9 8 0

8 SAMPLE SESSIONS

.def SYMB-1 Arthur Trent

.def SYMB-2 13 Diablo Drive

.def SYMB-3 Wallingford, Pa.19380

.insert LETTER

.def SYMB-1 Mildred Saurus

.def SYMB-2 5507 Burney Blvd

.def SYMB-3 Phoenix, Arizona 85031

.insert LETTER

.def SYMB-1 Genghis & Sylvia Khan

.def SYMB-2 3 The Circle

.def SYMB-3 Edison, NJ 08817

.insert LETTER

.def SYMB-1 Hari Seldon

.def SYMB-2 2 Foundation Place

.def SYMB-3 Trantor, Ohio 45067

.insert LETTER

Now simply give the command:

RUNOFF MAIN

plus FILE $MAIN and/or TTY, and you will get all your form letters, one for each address,
with no more effort.

Note
If you want each letter on a separate sheet of paper, rather
than on the standard continuous folded paper, give RUN
OFF's PAUSE command at the beginning so you can insert
paper for each letter.

Figure 8-3 shows what your output will look like. Figure 8-4 shows the arrangement of files
for doing form letters.

ASTERISK CONSTRUCTIONS
Use the asterisk (*) to repeat an EDITOR command line. If you include the FIND or LOCATE
commands in your command line, you can cause a command to be applied to selected lines
in a file. For example, if you had a file containing names and addresses, and several of the
zip codes were missing for New York, NY, you could:

f New York;a xx;c/NYxx/NY 10000/;c/xx//;*

This finds lines beginning with "New York". On those lines, it appends "xx". If the line has
no ZIP code after "NY", then "NYxx" (at the end of the line) is changed to "NY 10000". If
the line already has a ZIP, the "xx" is removed. The * repeats the command for all lines in
the file. For lines not beginning with "New York", the command makes no changes.
If you want a command repeated for only the next several lines, but not to the end of the file,
follow the asterisk with a number parameter. For example,

point 37
locate Vienna;c/Australia/Austria/;*88

1 M a r c h 1 9 8 0 8 - 1 0 F D R 3 1 0 4

SAMPLE SESSIONS 8

~

Figure 8-3. Form Letter Output

FDR 3104 8-11 1 March 1980

8 SAMPLE SESSIONS

LIST

ED

MAIN

A d d r e s s - 1 |

A d d r e a « - 2 j
Addri u s - 3 j

.lie! SrMD Addr

. ins LETTEfc

.act SVHll Addr 2 1

.ins LETTER

.cicf SKHB Addr 3 1

.ins LETTED

LETTER

RUNOFF

Figure 8-4. File Arrangement for Form Letters

Door Hiiri Soldon,

changes "Australia" to "Austria" in line 37 and any of the 88 following lines in which Vienna
appears.
Without a FIND or LOCATE, your command will affect every line. For example, this
command encloses all lines in parentheses:

c//(/;a);n;*

THE GMODIFY COMMAND
The GMODIFY command edits a line of text on a character-by-character (column-by-
column) basis. It can perform complicated editing operations which would be difficult or
impossible with the other EDITOR commands. For example, you can change

Ackerwyth, F.J.: 213-555-4244
Garvin, W.: 200-555-9950
Mason, Perry: 955-3438
Poirot, Hercule: 411-9922

1 March 1980 5-12 FDR 3104

SAMPLE SESSIONS

into

213-555-4244: Ackerwyth, F.J.
200-555-9950: Garvin, W.
955-3438: Mason, Perry
411-9922: Poirot, Hercule

with the single command

g d:e2fsi/: /c:/;n;*

Just as EDITOR assigns line numbers to each line of your file starting at the first line,
GMODIFY assigns column numbers to each character on a line, starting at the left.
GMODIFY uses a column pointer to move across a line and find the character or characters
you request. Think of it as pointing between characters, not at them.
GMODIFY works by putting the current line into a temporary storage area and then building
a new current line by moving a column pointer across the stored line as directed by your
subcommands, and moving your requested characters into the new current line. It discards
the stored line when it is done. Using subcomands, GMODIFY will do the following tasks:

• Take a specified number of characters from the stored line and copy them
into the new current line.

• Copy all characters from the stored line into the new current line, starting
from the current column position, and continuing until it finds a specified
character.

• Move the column pointer along the stored line in either direction, without
copying characters into the new current line, either to a specified column
or until a specified character is found.

• Insert new text strings into the new current line.
EDITOR cannot perform the GMODIFY command on a .NULL. line. If you try to GMODIFY
a .NULL, line, you will get the message

.NULL.
BAD GMODIF

Each subcommand consists of a single letter which may be followed by:
• A number, indicating a number of columns
• A character indicating a character in the current line.
• A text string enclosed in delimiters to be inserted into the new current line

as specified.
One GMODIFY command may contain several subcommands. Subcommands may be
separated by any number of spaces (or no spaces), but may not be separated by commas.
Subcommands must be separated from the GMODIFY command by at least one space.
In the following explanation of GMODIFY's subcommands, the c represents a character in
the stored line, n stands for a number of columns. The slash character (/) represents a
delimiter for a string — any character not contained in the string may be used as the
delimiter except for an erase or kill character, or a carriage return.
GMODIFY's subcommands are:

Subcommand Meaning
Cc Copies into the new line from the stored line, starting at the

current column, all characters up to (but not including) the c
parameter. The column pointer moves to the immediate left of

1 M a r c h 1 9 8 0 8 - 1 3 F D R 3 1 0 4

8 SAMPLE SESSIONS

Mn

Dc

En

Bn

the column containing c. If c is not found, all characters to the
end of the stored line are copied.
Copies n characters from the stored line into the new current
line. The column pointer moves n characters to the right of
where it began.
Moves pointer, without copying, across the stored line up to, but
not including, the c parameter. If c is not found, the pointer
moves to the end of the stored line; this has the effect of deleting
all characters to the right of where the pointer began.
Moves pointer n positions to the right in the stored line, without
copying those n characters into the new current line.
Starting at the current column, this moves the pointer n spaces
to the left in the stored line (but not past the beginning of the
line).
Repositions pointer to the beginning of the stored line.
Starting at the current column of the stored line, copy all
remaining characters into the new current line. If you do not use
the F subcommand, all remaining parts of the stored line which
were not copied into the new line will be deleted.
Insert string into the new current line.
Starting from the current column, copy all remaining characters
from the stored line into the new current line, then append
string. Equivalent to FI/string/.
String is copied into the current line. The pointer is moved
ahead on position in the stored line for every character in string,
thus "replacing" that portion of the stored line with string.
The same as R/string/, except that a space character in string
causes the corresponding character in the stored line to be
copied into the new current line. The wild symbol (!) will create
an actual space in the line. The effect is to copy a portion of the
stored string into the new current line and then to "overlay"
string onto it.
Reverses the sense of the c parameter in the next C or D
command, to mean "... up to next character not matching c". N
may be separated from the C or D by other subcommands, but
affects only the C or D, not the others.

Here are a few examples using GMODIFY:

I/string/
A/string/

R/string/

O/string/

N

OK, ed bells
GO
EDIT
print 2
.NULL.
bells bells bells bells
g ml8 i/gongs/f
bells bells bells gongsbells
g m23 o/!bells/
bells bells bells gongs bells
g el8 cb blS f
gongs bells bells gongs bells
g db cb r/gongs / e5 m6 s m6 i/gongs/
gongs gongs gongs gongs
fi l e

FDR 3104 8-14 1 March 1980

SAMPLE SESSIONS 8

OK, ed verb.list
EDIT
P23
.NULL,
reading
w r i t i n g
ed i t i ng
reel ing
wr i th ing
BOTTOM
t, n
reading
g fi / / s fi / : / ; n ; *
reading reading:
w r i t i n g
wr i t i ng wr i t i ng :
ed i t i ng
ed i t ing ed i t ing :
ree l ing
reel ing reel ing:
wr i th ing
wri th ing wr i th ing
BOTTOM
t
c / i ng : /e r /99
reading reader
wr i t i ng wr i te r
ed i t ing ed i ter
reel ing reeler
wr i th ing wr i ther
BOTTOM
fi l e

OK,

THE MOVE AND XEQ COMMANDS
These commands are of limited value to most users. They can be useful to those developing
complicated EDITOR macros. Most repetitive editing actions are best done with Asterisk
Constructions, described above.
String Buffers
The EDITOR has several special storage areas, called string buffers, each of which can hold
one line of text. They are:

• STR.l, STR.2, STR.3, STR.4, STR.5, STR.6. STR.7, STR.8, STR.9, and STR.10
are available for you to use as storage areas. (STR.l, STR.2, and STR.3 are
also known as STRA, STRB, and STRC.)

• EDLIN is the command line currently being executed.
• INLIN is the current text line in your workfile.

Upper and lower case letters are equivalent in string buffer names.
The primary use for the string buffers is in building complicated commands which can be
executed repeatedly, using the XEQ command. The MOVE and XEQ commands, described
below, are the only EDITOR commands which use the string buffers.

1 M a r c h 1 9 8 0 8 - 1 5 F D R 3 1 0 4

8 SAMPLE SESSIONS

Using MOVE
Use the MOVE command to put a line of text or commands into a string buffer. The
command format is:

MOVE buffer-2 buffer-1
or

MOVE buffer-2 /string/
A line of text (or commands) is moved into buffer-2 from buffer-1 or from /string/ The
delimiters on string (shown here as slashes) may be any non-alphabetic character which
does not appear in string, including comma and semicolon.
Examples:

MOVE INLIN STR.l Replaces the current line with
the contents of STR.l

.._T7rn _mr, , ,. , , , , Puts "c/iron/gold/" into STR.lM O V E S T R . l : c / i r o n / g o l d / : * . ,
(for use by XEQ, below).

Note that there are two sets of delimiters in the string in the second example above. The
colons enclose the entire string, the slashes are used as delimiters for the change command.
The MOVE command is necessary to the XEQ command described below.

XEQ command
Once you have MOVEd a command string into a string buffer, you can execute it via
EDITOR'S XEQ command. For example:

OK, ed fair
EDIT
P2
.NULL.
fair is foul and foul is fair
move str.l /c: foul :fxxx:g;c:fair :foul :g;c:fxxx :fair :g/
xeq str.1
fair is fxxx and fxxx is fair
foul is fxxx and fxxx is foul
foul is fair and fair is foul
xeq str.l
fxxx is fair and fair is fxxx
fxxx is foul and foul is fxxx
fair is foul and foul is fair
fi l e

OK,

F D R 3 1 0 4 8 - 1 6 1 M a r c h 1 9 8 0

The EDITORreference section
INTRODUCTION
This section contains complete information on all the EDITOR commands. The commands
are listed in alphabetical order.

EXPLANATION OF THE COMMAND FORMAT
EDITOR'S command format is:

COMMAND parameter
The word in capital letters is the command word.

Command words
The letters shown in rust in the command words indicate the required abbreviation. You
must type at least these letters; you may type as many more as you wish. The following are
all acceptable ways to input a command whose format is PPEND: A, APP, APPE, APPEND.
Also, you may type the letters of command words in any combination of upper and lower
case letters. All of the following are equally valid: A, a, APpend, append, ApPend, appEND.

Parameters
As a rule, the parameter in a command format will be:

• The word filename, representing a filename or a file's pathname.
• The letter n, representing a number.
• The word character, representing a single character.
• Any of the words string, text, or newline, representing a piece of text.

If the parameter is a number represented by the letter n, you don't have to type a space
between the command word and the number. For example, the following are all valid:

Print5
Pr5
PRINT 15
P-5
P " 5

Note that there cannot be a space between the minus sign and a number.

F D R 3 1 0 4 9 - 1 1 M a r c h 1 9 8 0

9 THE EDITOR REFERENCE SECTION

If the parameter is a filename or a character, you must have at least one space between the
command word and the parameter:

load memo
k i l l &

If the parameter is a text string (indicated by text, string, newline), EDITOR assumes that
there is exactly one space between the command word (or abbreviation) and the text string:

find DEPARTMENT
append and so forth
insert Dear Sir or Madame,

Any space after the first space is considered part of string. So, for example, the commands:

append _ henceforth
find... henceforth

would be using the string S S henceforth which begins with two blank spaces.

THE COMMANDS

▶ APPEND string
The APPEND command attaches the specified text to the end of the current line. One blank
separates the command word APPEND (or whatever abbreviation) from string you wish to
append. All further blanks are treated as text. If you want to have a space between the last
word of the current line and the first word you are appending, you must type two spaces
between the command word and the first word of appended text. If there is no blank
between APPEND and string, EDITOR gives the error message:

BAD APPEND

and you should try again. The string to be appended is terminated by either a RETURN or
a semicolon (;). You can use commas (,) in the string. You can append semicolons only if the
semicolon character has been freed for use as a text character via the SYMBOL command.
Semicolons must otherwise be inserted by using the CHANGE, MODIFY, or GMODIFY
command. No trailing blanks — i.e., blanks between the last nonblank character of
appended text and the RETURN or ; — are inserted.
▶ B O T T O M
The BOTTOM command positions the pointer at the bottom of the EDITOR work file. A
PRINT command at this point would show the null line .NULL. Any new lines inserted now
would go under the last line of text in the file. Any attempt to find the NEXT line would
result in the word:

BOTTOM

▶ B R I E F
The BRIEF command suppresses the verification output produced by the following com
mands: APPEND, CHANGE, FIND, GMODIFY, LOCATE, MODIFY, NEXT, NFIND.
BRIEF mode allows experienced users to work faster. This is particularly useful on
terminals which print at a slow speed.
When in BRIEF Mode, use the PRINT command to check the results of your most recent
command. To re-activate the verafication responses, use the command VERIFY (which is the
default).

1 M a r c h 1 9 8 0 9 - 2 F D R 3 1 0 4

THE EDITOR REFERENCE SECTION 9

*
▶ CHANGE/string-l/string-2/[G] [n]
The CHANGE command replaces string-1 with string-2.
It distinguishes between upper-case and lower-case letters. If string-1 is not found, no
change is made.
The first character after the command word CHANGE (or abbreviation) is used as the
delimiter in the command. Any character including the semicolon (;) and the space may be
used as a delimiter instead of the slash. A space between CHANGE and the delimiter is
optional, unless the delimiter is a letter or space character, in which case the space is
required.
If the letter G (for General) is specified, CHANGE changes every occurrence of string-1 on
a line. If you don't specify G, only the first incidence of string-1 is changed.
If the value of n is 1, 0 or unspecified, EDITOR only makes changes on the current line. If
a value other than 0 or 1 is specified, EDITOR inspects and makes changes on n lines starting
at the current line, and leaves the pointer positioned at the nth line. If there are fewer than
n lines in the file below the current line, the pointer is left at the null line below the last line,
and the message BOTTOM is printed.
EDITOR will print all changed lines, plus the last line examined.

Note

1. Remember to go to the TOP before making changes on the file as a whole.
2. You can omit the closing delimiter (/) if you end the command with a

RETURN.
3. You can specify the semicolon (;) as a text character within the delimiters

— thus, if you used "@" every place in your file where you wanted to use
";", the command sequence TOP,CHANGE/@/;/G9999
would change the @'s to ;'s. (Make sure n is greater than the number of
lines in your file.)

4. You can use CHANGE to insert characters at the beginning of a line with
the sequence CHANGE//string/.

▶ DELETE [n]
The DELETE command deletes n lines, including the current line, from the EDITOR work
file, and leaves the pointer at the place where the last deleted line was. (The line .NULL,
will be maintained, in case you wish to insert a newline; this null line will disappear as soon
as a new command moves the pointer away.)
If n is omitted, the default value of 1 is used, and only the current line is deleted. The value
of n may be positive or negative, indicating deletion of the current line plus lines below or
above the current line. Since n always includes the current line, Dl, D or D -1 will all delete
only the current line.
Helpful Hints: To avoid wiping out file lines completely, use the DUNLOAD command, and
delete the DUNLOAD - created file(s) later. If the deleted lines were in the original file, you
can QUIT without FILEing and start EDITing a new copy, if you have to. Of course, you will
have to do all changes from the previous session on this new copy.

▶ DELETE TO string
The command DELETE TO string deletes from the EDITOR work file all lines, starting with
the current line, up to but not including the first following line which contains string
anywhere within it. There must be a blank between TO and string. See the Helpful Hints in
DELETE for an alternative.

F D R 3 1 0 4 9 - 3 1 M a r c h 1 9 8 0

9 THE EDITOR REFERENCE SECTION

WARNING
Be sure string is there and spelled exactly as specified,
including proper case of letters, or you will delete everything
in your file below the current line.

▶ DUNLOAD filename [n]
The DUNLOAD command creates a new file with the indicated filename, copies n lines
from the EDITOR work file, beginning with the current line, into this new file, and then
deletes these n lines from the work file. Be careful not to specify a filename currently in use
unless you want the old file wiped out. If filename is not specified, you will get the error
message:

BAD DUNLOA
If n is not specified, the default value of 1 is used and one line is DUNLOADed. DUNLOAD
leaves the pointer positioned at a null line where the deleted lines used to be; this null line
disappears as soon as the pointer is moved. The DUNLOAD command is useful for moving
lines of text to different places; DUNLOAD can also be used instead of DELETE if you want
to make sure you don't accidentally delete large blocks of text. (But don't forget to delete the
DUNLOAD-created files from your UFD when you're through with them.)

[> DUNLOAD filename TO string
The DUNLOAD TO command copies lines from the EDITOR work file into a new file named
filename and then deletes these lines from the original file. Lines are copied starting with
the current line and continuing down until a line containing string is found, or until
BOTTOM is reached. There must be a blank between TO and string. If filename is not
specified, you will get a file named TO, contaning the current line.
DUNLOAD TO leaves the pointer positioned at the line containing string, which was not
deleted. It prints out this line.
The DUNLOAD TO command is useful for moving lines of text to different places;
DUNLOAD TO can also be used instead of DELETE TO if you want to make sure you don't
accidentally delete large chunks of text. (But don't forget to delete the DUNLOAD TO-
created files from your UFD when you're through with them.)
Remember:

1. Be sure the string is there and spelled exactly as specified or you will
delete everything in your file below the current line.

2. Don't specify a filename currently in use unless you want the old file
wiped out.

▶ ERASE character
The ERASE command allows you to change the previous value of the erase character to the
character specified; this change will be in effect either until you give a new ERASE
command within the EDITOR session or until you QUIT from EDITOR. The erase character
deletes the immediately preceding character of terminal input.
When you leave EDITOR, PRIMOS resets the erase character to the default. Unless your
System Administrator has changed the system defaults, the EDITOR default erase character
is the double-quote (") character.
The ERASE command is useful if you intend to use the default character often as a text
character. The erase character of the moment can always be entered as text by preceding it
with the escape character (default is uparrow (*)).
To check the current value of the erase and escape characters use the PSYMBOL command.

1 M a r c h 1 . 9 8 0 9 - 4 F D R 3 1 0 4

EDITOR REFERENCE SECTION 9

r

r

▶ FILE [filename]
The FILE command turns the EDITOR work file, (which is so far only temporary) into a
permanent file in your UFD (or sub-UFD), and returns you from EDITOR back to PRIMOS.

WARNING
Since the work file has no existence outside of EDITOR, you
must FILE if you want to save work.

The rules for using the FILE command are:
1. If you have been creating a new file, you must specify filename. (The

error message FILENAME MUST BE SPECIFIED will occur if you don't.)
You cannot have two files with the same name in the same UFD! If you
give a filename which already exists in your UFD, EDITOR will delete
the old file by that name from your current UFD and put the work file in
its place.

2. The same warning holds true for old files. If you have been working on
an old file and you specify the old filename, or say FILE without a
filename, your old copy is deleted, and only your new version kept. If you
do specify a filename, EDITOR writes into a file being edited, and prints
its name. Giving a new filename keeps both the old and new versions —
but be sure not to accidentally wipe out some other old file by using its
name.

3. If you do not wish to save your work from a given session, but instead
want to retain your original version, unchanged, type QUIT instead of
FILE. If you made any changes in your current file, EDITOR will inquire:
FILE MODIFIED, OK TO QUIT? to double-check with you. A YES
response QUITS you back to PRIMOS; NO provokes PLEASE FILE, at
which point you give the FILE command.

4. Rules for making filenames

A. Filenames can be up to thirty-two characters long.
B. Filenames can contain only the following characters: A through Z, 0

through 9, -&#$*_. /. Characters not permitted in filenames
include: imbedded blanks (spaces), special characters such as: , ? ! @

C. The first character may be any legal character except a digit.
D. Upper and lower case letters are treated as upper case by PRIMOS.

(Letters entered in lower-case will be converted to upper-case.)

▶ FIND string
The FIND command finds the first line below the current line which begins with string, and
makes that line the current line. If no line beginning with string can be found, the pointer
stops at the end of the file, and the word BOTTOM is printed. The FIND command
distinguishes between upper and lower case letters in string. You may use the wild symbol
(!) and match-n-spaces (#) symbols in string. If you are unable to FIND old lines in your file,
but can FIND newly inserted ones and your current display is entirely in upper case letters,
the CASE control on your terminal may be in the wrong position.

▶ FIND(n) string
You can also FIND a string starting on other than column 1 of the line, by specifying the
number of the column within parentheses directly after the command word. There must not
be a space between FIND and (.

F D R 3 1 0 4 (1 8) 9 - 5 1 J a n u a r y . 1 9 8 1

9 EDITOR REFERENCE SECTION

▶ G M O D I F Y
EDITOR'S GMODIFY command is a string-oriented editing routine which permits you to edit
the current line on a character-by-character/column-by-column basis.
If you have given an invalid or illegal subcommand, EDITOR will ignore the rest of the
current command line, and the current line will NOT be replaced by the buffer contents.
Subcommands may be separated by any number of spaces (or no spaces) but may NOT be
separated by comas.
See Section 8, SAMPLE SESSIONS, for complete information on the GMODIFY command.

▶ IB newline
The IB (insert before) command is used exactly like the INSERT command, except that
newline is inserted before the current line, rather than following it.

((ASR))▶ I N P U T < (F T R) >
((TTY))

The INPUT command reads text from the specified inpul devices:
• ASR — Teletypewriter paper tape reader
• PTR — High-speed paper tape reader
. TTY — Terminal (default)

The opening parenthesis is required. An INPUT command without an argument puts you in
input mode. PTR must be ASSIGNED before use.

▶ INSERT newline
The INSERT commands inserts newline following the current line; the inserted line then
becomes the current line. The first space after the command word separates it from newline.
You may not use a semicolon in newline unless the semicolon is preceded by the escape
character (normally "). A semicolon or RETURN will signal the end of the line being
inserted. Use the PSYMBOL command to inspect the current ESCAPE and SEMICO
characters, and the SYMBOL command if you wish to change them.

^ KILL character
The KILL command changes the kill character from whatever it previously was to the
specified character. There must be exactly one space between the command word KILL and
the new kill character. You can check the current value of the kill character with the
PSYMBOL command.

▶ LINESZ n
The LINESZ command allows the line size of the EDITOR to be changed. In no case can it
be made larger than the maximum size (initial size at start-up) or less than 10, but within
those limits it can be set or reset as much as desired. The parameter n is the number of
characters in the line. If EDLIN (the command line), INLIN (the input line), or.STR.l
through STR.10 (the string buffers) contain more characters than the new maximum, they
are shortened appropriately. If the file contains a line longer than the new size, the message
BAD LINE IN FILE is printed and the line truncated (a few characters may be lost). When
a line is typed that is too long, the ? is printed, the BELL is rung, and the line is truncated.
The remainder of the typed line is lost.
This command is useful only when you are creating a new file, and should be used before
you enter any text. The default value of n is 1024 which is the maximum value.

1 January. 1981 9 _ 6 F D R 3 1 0 4 (1 1

EDITOR REFERENCE SECTION 9

r

^

▶ LOAD filename
The LOAD command copies the contents of filename into the EDITOR work file just below
the current line. The pointer will then be just below the end of the LOADed text, positioned
at a null line.
LOAD does not affect the contents of the original file filename in any way; it simply copies
the contents of filename into the work file.
Remember: LOADED text will not go in your permanent files in your UFD unless you FILE
at the end of the EDITing session.
▶ LOCATE string
The LOCATE command finds the first line below the current line which contains string and
makes it the current line. If no line containing string is found. BOTTOM will be printed and
the pointer left at the end of the file.
The first space after LOCATE separates string from the command word. All other spaces
will be considered part of string. You may use the wild symbol (!) and match-n-spaces (#)
symbols in string.
▶ MODE fCKPAR I

(NCKPAR)'
The command MODE CKPAR causes EDITOR to print as "nnn any characters which have
a parity bit of 0. (Prime's standard is that the parity bit is 1.) In MODE NCKPAR (the default)
characters are printed normally, regardless of the parity bit.

(PRINT▶ MODE COUNT [start] [increment] [width] < BLANK
(SUPPRESS)

MODE NCOUNT
MODE COUNT allows you to increment a counter symbol with every use and replaces it in
the text by the current value, whenever the counter symbol occurs in the commands:
APPEND, INSERT. OVERLAY, RETYPE, GMODIFY (with A, I. O. R subcommands).
The meanings of the COUNT parameters are:

• start — initial value for the counter > 0 (default = 1)
• increment — initial increment ^ 0 (default = 1)
• width — field width (number of digits) 1< width <1() (default = 5)
• PRINT — Print leading zeroes (default)
• SUPPRESS — Do not print leading zeroes
• BLANK — Replace leading zeroes with blanks

The counter symbol character may be redefined via the SYMBOL command. Its default is
the @.
MODE NCOUNT frees the count character as a normal printing character. This command
does not affect the values of the counter, increment, width, or the PRINT, SUPPRESS or
BLANK parameters. MODE NCOUNT is the default.
>> MODE I NUMBER I

(NNUMBER/
The command MODE NUMBER causes EDITOR to add the line number (as printed by
WHERE) in front of each line of the file when displayed either by verification responses or
by the PRINT command. The line number is not part of the actual file — it is a number
EDITOR uses for its own reference. You cannot FIND or LOCATE line numbers; however,
you can determine a line's number via WHERE, and go directly to a line via POINT.
The command MODE NNUMBER turns off the display of line numbers. MODE NNUMBER
is the default mode.

F D R 3 1 0 4 (1 8) 9 - 7 1 J a n u a r y . 1 9 8 1

9 EDITOR REFERENCE SECTION

^ MODE (COLUMN \
(NCOLUMN)

The command MODE COLUMN causes a column header display to be printed every time
you enter input mode during an EDITOR session. The command MODE NCOLUMN turns
off the column header display. NCOLUMN is the default mode.
^ MODE (PROMPT I

(NPROMPTJ
The command MODE PROMPT causes EDITOR to start printing prompt characters. MODE
NPROMPT is the default mode, and is reset every time you leave EDITOR.
The default prompts are the ampersand (&) for INPUT mode and the dollar sign ($) for EDIT
mode.

(PRALL)
▶ mode <prupper >

(prlower)
The case modes allow you to indicate upper and lower case letters on terminals which have
only upper case display.
MODE PRALL (default) is for terminals with both upper and lower case letters; it accepts
and prints mixed case text. In MODE PRALL, an upper case only terminal will output mixed
case text as unflagged upper case text even though the file really contains mixed case.
MODEs PRUPPER and PRLOWER accept and output case-flagged upper-case letters (i.e.,
upper-case letters with the actual case flagged). PRUPPER assumes that each line of input
and output begins with upper-case letters; PRLOWER assumes the lines begin with lower
case letters. Upper-case is signalled by an up-arrow-U ("U) before a series of letters which
are meant to be upper-case; lower-case by up-arrow-L ("L) before lower case. For example,
the text:

This line begins with UPPER case,
while this one does not.

under MODE PRUPPER appears (or may be input) as:

TLHIS LINE BEGINS WITH "UUPPER "LCASE,
"LWHILE THIS ONE DOES NOT.

and under MODE PRLOWER as:

"UTLHIS LINE BEGINS WITH "UUPPER "LCASE,
WHILE THIS ONE DOES NOT.

▶ MODIFY/string-l/string-2/[G] [n]
The MODIFY command changes string-1 to string-2 like CHANGE, but does not affect the
spacing of characters in the original line. MODIFY operates in the following manner:

1. Locates string-1 in current line.
2. Starting at the beginning of string-1, replaces with blanks as many

characters as there are in string-2, whichever is longer.
3. Copies string-2 onto the current line beginning at the first newly-made

blank.
The first character after the command word MODIFY (or its abbreviation) is used as the
delimiter in the command. Any character including the semicolon (;) and the space may be
used as a delimiter instead of the slash.

1 J a n u a r y . 1 9 8 1 9 - 8 F D R 3 1 0 4 (1 8)

EDITOR REFERENCE SECTION 9

If the letter G (for General) is specified, MODIFY alters every occurrence of string-1 on a
line. If you don't specify G, only the first incidence of string-lis modified. If the value of n
is 1, 0 or unspecified, EDITOR will only MODIFY on the current line. If a value other than
0 or 1 is specified, EDITOR will inspect and MODIFY n lines starting at the current line, and
leave the pointer positioned at the nth line. If there are fewer than n lines in the file below
the current line, the pointer will be left below the last line.

1. Remember to go to the TOP before MODIFYing the file as a whole.
2. You can omit the closing delimiter if you end the command with a

RETURN.
3. You can specify the semicolon (;) as a text character with the delimiters

— e.g., if you used "@" every place in your file where you wanted to use
";", then the command sequence

MODIFY/@/;/G 99999
would change all the @'s to ;'s. (Make sure n is greater than the number
of lines in your file.)

^ MOVE buffer-2 (buffer-1 \
\/string/ j

The MOVE command moves one line of text into buffer-2 from buffer-1 or string. The Prime-
supplied buffers are:

• EDLIN (line you are typing at terminal)
• INLIN (current line in EDITOR file)
• STR.l (also called STRA)
• STR.2 (also called STRB)
• STR.3 (also called STRC)
• STR.4 through STR.10 (no synonyms)

The delimiters around string can be any non-alphabetic character including comma (.) or
semicolon (:) which does not appear in string. If MOVE is the last command on the line, the
closing delimiter may be omitted.
The command: MOVE buffer // clears buffer. See Section 8 for more information.

▶ NEXT [n]
The NEXT command moves the pointer n lines. Positive values of n move the pointer toward
the bottom, negative values toward the top. If n is 0 or unspecified, the default value of 1 is
used.
If a NEXT command would move you to or beyond TOP or BOTTOM. TOP or BOTTOM will
be printed at the appropriate null line.

▶ NFIND string
The NFIND command finds the first line below the current line which does not begin with
string, and makes that line the new current line.
NFIND is the exact opposite of FIND — it skips over lines which begin with string, and stops
at the first line which doesn't.
If NFIND can't find a line which doesn't begin with string, the pointer is left at BOTTOM.
Put exactly one space between the NFIND command and string. For example, NFIND SSS
AUTOMOBILES looks for the first line not beginning with "S S AUTOMOBILES".
Like FIND, you can NFIND beginning on a column other than column 1:

NFIND(n) string

F D R 3 1 0 4 (7 8) 9 - 9 1 J a n u a r y . 1 9 8 1

9 EDITOR REFERENCE SECTION

Remember: There must be no spaces between NFIND and (n), and exactly one space
between (n) and string. The parentheses () are required.

▶ NLOCATE string
The NLOCATE command finds the first line below the current line which does not contain
string, and makes that line the new current line.
NLOCATE is the exact opposite of LOCATE—it skips over lines containing string, and stops
at the first line which doesn't.
If NLOCATE can't find a line which doesn't contain string, the pointer is left at BOTTOM.
The first space after NLOCATE separates string from the command word. All other spaces
will be considered part of string.

▶ OOPS
The OOPS command restores the most recently changed line to its condition just before
changing. If your last command changed several lines, OOPS will restore only the last line
to have been modified. The most recently changed line must be the current line for OOPS
to work. A second OOPS will not undo a previous OOPS.
▶ O U T P U T ((D I S P L AY))

((T T Y) f
While all PRINT commands will print on the user terminal (TTY), the command OUTPUT
DISPLAY permits you to send verification output to a DISPLAY terminal. OUTPUT TTY is
the default; if no device is specified, TTY is assumed.
(Using the DISPLAY command option calls for a 9600 Baud display terminal to be connected
to Port 3 of the System Option Controller. If you don't have one, this command is of no use
to you.)

▶ OVERLAY string
The OVERLAY command superimposes the indicated string over the current line, beginning
with column 1 as follows:

1. Any character in string except those described below will replace the
character in the corresponding column of the current line. (Note: "", and
*? are each considered to be a single text character.)

2. A space () in string leaves the original character unchanged.
3. An exclamation (!) in string forces a space in the corresponding column.
4. The tab (/) causes tabbing to the next tab stop.
5. ERASE, KILL and SEMICO (normally",?, and ;) have their usual control

functions of Erase, Kill, and end-of-command-string.

▶ P A U S E
The PAUSE command allows you to return to PRIMOS level without ending your EDITOR
session. PAUSE preserves EDITOR'S work file with all your input and/or editing, and holds
the pointer at the current line.
PAUSE is useful, among other things, if you wish to check your UFD for potentially duplicate
filenames before issuing a PILE command. To return to EDITOR, type START — and a
carriage-return. You are now back in EDITOR where you left off.

Note
You cannot return to a specific EDITOR session via START if:
1. You type ED again.

J January, 1981 9-10 FDR 3104(18)

EDITOR REFERENCE SECTION 9

2. You do anything other than an internal PRIMOS com
mand (LISTF, CREATE, DELETE, CNAME, ATTACH).

3. You log out.

▶ POINT n
The POINT command positions the pointer at line n (makes line n the current line).
The value of n must be greater than 0. If n is greater than the number of lines in the file, the
pointer is left at the bottom.
The line numbers are not actually part of your work file; EDITOR generates them for its own
reference. You can determine line numbers specifically via WHERE or generally via MODE
NUMBER.

▶ PPRINT [first] [last]
The PPRINT command prints a range of lines relative to the current line without changing
the position of the current line. For example,

PPRINT -3 12
prints from three lines before the current line to 12 lines past the current line.
PPRINT with no numbers is the same as

PPRINT -5 5
printing from five lines above to five lines below the current line.
If you only specify one number, and it is negative, PPRINT sets first to that number, and last
to zero. For example,

PPRINT -8
prints from eight lines back, up to the current line.
If you only specify one number, and it is positive, PPRINT sets last to that number, and first
to zero. For Example.

PPRINT 7
prints from the current line up to seven lines forward.

▶ PRINT [n]
The PRINT command prints n lines, including the current line, and makes the last PRINTed
line the new current line.
If n is negative. EDITOR first backs up n lines, beginning the count with the current line, and
then prints one line.
The space between PRINT and n is optional. A PRINT immediately after the following
commands yields .NULL.; BOTTOM, DELETE, DUNLOAD, LOAD, TOP.

▶ P S Y M B O L
The PSYMBOL command displays the current value of EDITOR'S symbols. See the SYMBOL
command for a list of symbols, their meanings, and their default values.

▶ PTABSET ptab-1 ptab-2 ...
The PTABSET command tells EDITOR to use your terminal's physical tab stops when
printing output. For example, if your terminal has built-in tabs every 8 spaces as many do.

PTABSET 8 16 24 32 40 48 56 64 72
will enable EDITOR to reduce the number of spaces it needs to send to your terminal when
printing long lines with many spaces.

FDR 3104(18) 9-11 1 January. 1981

9 EDITOR REFERENCE SECTION

^ P U N C H / (A S R) I
\(PTP) j [n]

The PUNCH command punches n lines on the specified paper tape punch:
• ASR — Teletypewriter punch
• PTP — High speed punch

The opening parenthesis is required. A PUNCH command with no argument assumes the
PTP device. The device PUNCH must be ASSIGNED before use.
Punching on the ASR must be done in BRIEF mode.

▶ Q F
The QF command (quit final) is the same as the QUIT command, except that it quits without
question even if the file is modified.

▶ Q U I T
The QUIT command tells EDITOR you want to return to PRIMOS level and do not want to
save the input or changes you have done. If you have created/modified the file during the
session, EDITOR will respond with:

FILE MODIFIED, OK TO QUIT?
This message asks whether EDITOR may throw away the work file.
A YES (or Y, YE, O, OK, or null line RETURN) response QUITs you; you will get back an
upper-case OK response, meaning you're at PRIMOS level. Any response except YES, YE,
Y, O, or OK produces a PLEASE FILE (see FILE); doing a FILE, with or without a filename
(depending on the circumstances), automatically QUITs you.
If you did not create or modify a file, typing QUIT returns you to PRIMOS with an OK.

▶ RETYPE s t r ing
The RETYPE command deletes the current line and replaces it with the text in string.
Exactly one space must be between the command word RETYPE and string. The string is
terminated by either a semicolon (;) or a RETURN.
RETYPE followed by one space before a carriage-return will act as a DELETE, erasing the
current line and leaving the pointer at the NULL line. RETYPE followed immediately by a
carriage-return yields the error message: BAD R.

▶ S AV E f i l e n a m e
The SAVE command allows a file to be written out without leaving the EDITOR. If filename
is not specified, EDITOR saves into the file being edited and prints its name.

▶ SYMBOL name character
The SYMBOL command changes the character value of a special symbol name to the new
character. The special symbols, their initial (system default) values, and their purposes are:

Special Symbol Name
KILL
ERASE
WILD
BLANKS
TAB
ESCAPE
CPROMP

Character Purpose
? Delete current line

Delete previous character
! M a t c h a n y c h a r a c t e r F I N D , N F I N D ,
§ M a t c h - n - s p a c e s L O C A T E
/ Spaces to next tab stop

Remove special meaning from next character
$ MODE PROMPT'S EDIT prompt

1 January, 1981 9-12 FDR 3104(18)

EDITOR REFERENCE SECTION 9

r

"

'

r

D P R O M P & M O D E P R O M P T ' S I N P U T p r o m p t
C O U N T E @ M O D E C O U N T ' S c o u n t e r s y m b o l
S E M I C O ; E n d - o f - l i n e s e p a r a t o r

You cannot use any of the following as a special symbol character.
• Multiple characters (e.g., ABC)
• comma (,)
• space ()
• asterisk (*)
• any character currently in use as a Special Symbol except the CPROMP or

DPROMP
You can check the current value of your symbols with the PSYMBOL command.

OK, eel
INPUT

EDIT
psymbo]
KILL •p
ERASE I I

BLANKS
WILD
TAB
ESCAPE
CPROMP
DPROMP
COUNTE
SEMICO
symbol k i l l {
symbol tab *
BAD SYMBOL
symbol escape 1
symbol wild ~
psymbo1
KILL
ERASE
BLANKS
WILD
TAB
ESCAPE o.'o
CPROMP
DPROMP
COUNTE
SEMICO
q

EDITOR automatically resets the symbols back to their default values whenever you QUIT
or FILE.
The Kill and Erase characters can also be changed via the KILL and ERASE commands.

Note
The SYMBOL command is helpful if you often use semi
colons, quotes, or the question mark in your text.

F D R 3 1 0 4 (1 8) 9 - 1 3 1 J a n u a r y . 1 9 8 1

9 EDITOR REFERENCE SECTION

▶ TABSET tab-1 tab-2 tab-3 ... tab-8
The TABSET command allows you to specify tabsettings for use with the backslash symbol
(\). Default tabsettings are 6, 12, 30.

tab 5 10 15 20

INPUT
0\5\10\15\20

will process to:
0 5 1 0 1 5 2 0

Use the MODIFY or OVERLAY commands to edit already existing tabulated text:

print 2
.NULL.

637-8687 637-12344
o\\637-1234

637-8687 637-1234

You must set your tab values correctly each time you edit the file to input additional data.

▶ T O P
The TOP command repositions the pointer at the top of the file, just abovethe first line of —
text. The contents of the current line are .NULL. An INSERT after TOP puts text above the
first line of text.
It is often a good idea to go to TOP before doing a FIND, a LOCATE, or a multi-line
CHANGE, or MODIFY.

▶ UNLOAD filename [n]
The UNLOAD command copies n lines beginning at the current line from the file being
EDITed into a new file named filename. If n is 0 or omitted, it is assumed to be 1. A negative
value for n UNLOADs the preceding n-1 lines and the current line, in the correct order.
The last line UNLOADed is the new current line. Make sure no file named filename
previously exists, or, if one does, that you don't want it — EDITOR will delete your old file
to write the new one.

▶ UNLOAD filename TO string
The UNLOAD TO command copies lines in the work file into a new file named filename;
lines are copied starting with the current line and continuing until a line containing string is
found, or until BOTTOM is reached.
Remember: Don't specify a filename currently in use unless you want the old file wiped out.
There must be a blank space between TO and string.

▶ V E R I F Y
The VERIFY command causes verification output — i.e., automatic printing of the new
current line — whenever any of the following commands are given; APPEND, CFIANGE,
FIND, GMODIFY, LOCATE, MODIFY, NEXT, NFIND, OVERLAY, POINT.
Verification output can be suppressed via the BRIEF command. VERIFY is the default mode.
If the OUTPUT (DISPLAY) command has been given, verification output goes to the remote
display.

1 J a n u a r y , 1 9 8 1 9 - 1 4 F D R 3 1 0 4 (1 8)

' •

EDITOR REFERENCE SECTION 9

▶ W H E R E
The WHERE command prints the current line number.

▶ XEQ buffer
The XEQ command executes the contents of buffer as a command line. The possible buffers
are:

• INLIN (current line)
• EDLIN (line you are typing)
• STR.l (also called STRA)
• STR.2 (also called 8TRBJ
• STR.3 (also called STRC)
• STR.4 through STR.10

Use the MOVE command to set up commands in string buffers.
XEQ with no buffer name re-executes the previous command line. It is possible to nest XEQ
commands so that commands in string buffers can be executed as subroutines.
Note that the "*" command causes execution to start at the beginning of the CURRENT
command line. All the rules for nesting *'s apply, but **s may be used in an XEQ sequence
so long as only one * is outstanding at any time. See Section 8 for more information.

▶ * [n]
The Repeat (*) causes the previous command string to be repeated n times, or until TOP or
BOTTOM is reached. See Asterisk Constructions in Section 8 for examples.

-

FDR 3104(18) 9-15 1 January. 1981

The RUNOFFreference section
INTRODUCTION
This section contains complete information on all RUNOFF commands. The commands are
listed in alphabetic order.

EXPLANATION OF THE COMMAND FORMAT
A RUNOFF command consists of a period (.) followed by a command word, and possibly one
or more parameters.
The period
The period beginning a line identifies a command, which is to be obeyed, as opposed to text,
which is to be processed. The period (.) must precede all RUNOFF commands that appear
in your source file. In RUNOFF command mode, the period should be omitted.

Command words
A command word is a word which specifies an action. You may input command words in
either upper or lower case (or a combination). In this manual, the letter(s) shown in rust in
a command word indicate the minimum acceptable abbreviation.
Parameters
A parameter, in RUNOFF, is either the name of a file, a number specifying a line, column,
page number, or number of lines or columns, or a piece of text, depending on the command.
Numerical parameters are represented in the formats by:

• The letter i for a general number
• The letter m for a number of spaces
• The letter n for a number of lines

Some commands do not use parameters, some require them, and in others, they are optional.
In this manual, parameters which are enclosed in brackets, e.g., [filename] are optional. If
you omit them, RUNOFF will use the appropriate default value.

RUNOFF COMMANDS

1 RETURN |

The NULL command (period carriage-return, or just carriage-return) tells RUNOFF to begin
(or continue) processing the source text file.

F D R 3 1 0 4 1 0 - 1 l M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

▶ . * c o m m e n t
The asterisk (*) indicates a comment line. It signals RUNOFF to ignore this text line. The
*comment permits you to insert explanatory comments into your source text files for later
reference. It also has a special use with the .FLOAT command.

▶ . + t e x t
The + (plus sign) inserts subsequent text on the line verbatim (exactly as it appears in the
source file) into the output file.
If previous lines were FILLed or ADJUSTed, any mode changes implied by the text on this
line apply only to this line. The + causes an implicit BREAK.

▶ . > text
The "greater-than" symbol (>) inserts subsequent text on this line verbatim, centered
between the left and right margins. If previous lines were FILLed or ADJUSTed, any mode
changes implied by the text apply only to this line. The > causes an implicit BREAK. ^_

W" ./left-text/center-text/right-text/
Apportions the text as left-justified, centered, and right-justified portions. You may omit any
of the text portions, but must still give all four delimiters. The slash (/) is the only
permissible delimiter here. The / may not be used as a text character.
▶ . A D J U S T
The ADJUST command tells RUNOFF to fill each line with words and adjust the spacing
between words until each line is right justified. ADJUST causes an implicit BREAK.
The ADJUST command takes priority over any previous mode command. ADJUST is the
default state. See Section 5 for more information.

▶ .BLANK character
The BLANK command resets the value of the blank character Each blank character
indicates a required blank in the source file. Blanks may be used to indicate words which
must not be separated by extra spaces. These blanks will be neither suppressed nor padded
during FILLing and ADJUSTing.

The default blank character is CONTROL-®

▶ .BMARGIN [n]
The BMARGIN command sets the bottom margin to n lines. If n is zero or omitted, the
bottom margin is reset to the default of five lines. If neessary, RUNOFF will recalculate
placement of the footers. BMARGIN causes both an implicit BREAK and EJECT.

▶ . B R E A K
The BREAK command signals the end of a paragraph. RUNOFF will stop FILLing the current
output line, and not ADJUST it.
Many commands cause an implicit BREAK, i.e., it is as if you said BREAK after them. See
Section 5 for complete information.

▶ .CMARGIN [m]
The CMARGIN command sets the inter-column spacing to m spaces. This command cannot -■
be used if you have only one text column at the time. If m is zero or omitted, the column
margin is reset to its default value of five spaces. The CMARGIN command causes an
implicit BREAK and EJECT.

1 M a r c h 1 9 8 0 1 0 - 2 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

▶ .COLUMNS [i]
The COLUMNS command sets the number of text columns on a page to i columns. This
command causes an implicit BREAK and EJECT. The default number of columns is 1.
If you want a combination of single and multi-column material on a given page, you must:

1. RUNOFF the different section as a distinct file.
2. Trim the margins off, using EDITOR.
3. Use RUNOFF's INSERT command to insert it, enclosed in a pair of

NFILL/ADJUST commands.

▶ .DDOWN [heading]
Go down one level and generate a label. (Decimalization command.)

▶ .DDSUP [heading]
Go down one level but suppress (do not print) label. (Decimalization command.)

▶ .DEFINE symbol-name value
The DEFINE command tells RUNOFF to find every use of the specified symbol-name
enclosed in symbol characters, and replace it with the indicated value. For example, the
command .DEFINE Name Arthur Trent tells RUNOFF to replace every occurrence of the
word 7rName% by Arthur Trent when processing the source file into the output file.
The symbol-name may be up to six letters in length and may not contain any commas,
parentheses or spaces. You may use two digit numbers as symbol names, e.g., 03,15, etc., but
not single digit numbers. A value may be up to thirty characters in length and may contain
any characters.
Up to 60 symbols may be defined at any one time. If you previously defined symbols which
you are not using, and need to now define more new ones, you can UNDEFINE some or all
of the old symbols. (See UNDEFINE.) Also, you may re-DEFINE an existing symbol; the new
definition will replace the old one.

▶ .DINDENT level-number label-indent [text-indent]
The DINDENT command specifies the amount to indent labels and text from the current left
margin. (Decimalization commands.)

▶ .DLEVEL level
Define the level at which numbering continues as level. (Decimalization command.)

▶ . D L I M I T [l i m i t]
Reset maximum level of label to be entered in TOFC file (Table of Contents command.)

▶ .DNEXT [heading]
Generate a label (and optional heading) on the current decimal level. (Decimalization
command.)

▶ .DNSUP [heading]
Generate a heading on the current decimal level, but suppress (do not generate) a label.
(Decimalization command.)
▶ .DRESET level value
Reset the level number to level and the next number on this level to value. (Decimalization
command.)

F D R 3 1 0 4 1 0 - 3 1 M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

▶ .DSKIP level [before-skip] [after-skip]
For each label on level level, skip before-skip lines before the label and after-skip lines after
it. (Decimalization command.)

▶ .DUP [n-levels]
Decrement the level number by n-levels. (Decimalization command.)

▶ . E E V E N
The EEVEN command (Eject Even) will cause an EJECT to the next even numbered page. If
the next page is odd, the odd page remains blank except for headers and footers (if any). The
page number used will be that displayed by # in the header or footer. If PAGEN [§) is not
specified, the physical page number will be used.

▶ .EFOOTER/left-text/center-text/right-text/
The EFOOTER command sets up the footer on even-numbered pages. Any character which
is not used in the text may be used as a delimiter. The delimiters (the slash, in above format)
define the contents of the left, center, and right portions of the footer; their presence is
required even if there is no text in a given portion, as the following examples demonstrate:

.EFOOTER/le ft-tex t///

.EFOOTER@@center-text@@

.EFOOTER***right-text*

▶ .EHEADER/left-text/center-text/right-text/
The EHEADER command sets up a header on even-numbered pages. Any character which
is not used in the text may be used as a delimiter. The delimiters (slashes in above format)
define the contents of the left, center and right portions of the header; their presence is
required even if there is no text in a given portion, as the following examples demonstrate:

.EHEADER/left-text///

.EHEADER@@center-text@@

. E H E A D E R * * * r i g h t - t e x t * ^
▶ .EJECT
The EJECT command makes the next text line go on a new page. EJECT forces a new page
even if there is more than one text column on the page at the time.
Certain commands, namely: BMARGIN, COLUMNS, CMARGIN, LENGTH, QUIT,
SMARGIN, TMARGIN and WIDTH, cause an implicit EJECT when given; this prevents
pages from having contrasting text format (even if you want it). See the COLUMNS
command for a way around this limitation.
Two EJECT commands will not be interpreted as a request for a blank page in your output.
To create a blank page, use a blank character
▶ . E O D D
The EODD command (Eject Odd) will cause an EJECT to the next odd numbered page. If the
next page is even, the even page remains blank except for headers and footers (if any). The
page number will be that displayed by jf- in the header or footer. If PAGEN (#) is not
s p e c i f i e d , t h e a c t u a l p a g e n u m b e r w i l l b e u s e d . — .
▶ .ERASE character
The ERASE command redefines the RUNOFF erase character, which is usable only in
RUNOFF command mode. ERASE changes the current value of the erase character to the
1 M a r c h 1 9 8 0 1 0 - 4 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

specified character. Once the erase character has been changed you cannot reset it until the
end of your RUNOFF session.

▶ . E R R G O
The ERRGO command suppresses the printing of prompts and error messages at the
terminal while RUNOFF is processing the source file. Instead, RUNOFF will process the
entire file, complete with the results of any errors. (This is particularly important when
running RUNOFF as a phantom user, as otherwise a source file with errors will bomb out
part way through the run.) The default is NERRGO (print error message and wait for
prompt).

▶ .FILE filename
The FILE command specifies the name of the output file. All source text, following a FILE
command, is processed into the given filename. You can give the FILE command more than
once in a source file, if necessary. Each FILE command is effective on all text which follows
it, up to the next FILE command or (if there is none) to the end of the source file.
Make sure you give the FILE command before any text or formatting commands! If you do
not give the FILE command in RUNOFF command mode, or do not specify a filename at the
time you give the command, RUNOFF asks you for one when it begins processing with this
message:

ENTER OUTPUT FILE TREENAME

If RUNOFF asks you to "enter output file treename" even
though you have supplied a FILE command, it means that text
appears before the FILE command. Even a single blank line
anywhere before the first FILE command will cause this
error.

If you give a filename which already exists in your current (or specified) UFD, RUNOFF
inquires:

OK TO DELETE OLD filename?
If you respond YES (or Y, OK, YE), RUNOFF deletes the existing file of that name, and
assigns the name to the new output file. If you respond any other way, RUNOFF asks:

NEW NAME:
Give a filename not in your directory.
The FILE command can be used at any point in your source file; if you want to process text
into a different file halfway through the source, give the FILE command plus a new output
filename. RUNOFF EJECTs before processing any output to the new file.

▶ . F I L L
Enter FILL and NADJUST mode. Text is filled, but not adjusted. This is true even if you were
in ADJUST; the FILL command overrides any previous mode. You must specify ADJUST to
enter ADJUST mode. This command causes a BREAK.

▶ .FLOAT filename
Operates in the same manner as PICTURE, but inserts the contents of an external file rather
than simply leaving space. Filename is the name of an external file containing text, a table,
or illustration captions.
The external file may contain any legal combination of text and RUNOFF commands, but
must be terminated by a RETURN statement.
You have the option of beginning the external file with a size control line, in the form:

F D R 3 1 0 4 1 0 - 5 1 M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

,wn
where n is the number of lines in the file (including lines reserved by FLOAT, INSERT, or
PICTURE commands). (This is the one instance when .* means more than just a comment.)
Thus if the file is shorter than one page and fits on the page currently being processed, it is
inserted immediately following the current line. If larger, the current page is completed, and
the external file is inserted starting at the top of the next page.
If the size control line is omitted, RUNOFF assumes that the FLOAT file is one page or more
in length, and inserts it starting at the top of the next page.
Parameters may be "passed" to the FLOAT file in the same way as with the INSERT
command (See INSERT). FLOAT commands may be nested up to 10 levels.

^ .FOOTER /left-text/center-text/right-text/
The FOOTER command sets up the footer on all pages. Any characters may be used as the
delimiter. The delimiters (slashes in the format) define the contents of the left, center, and
right portions of the footer. Their presence is required even if there is no text in a given
portion, as the following examples demonstrate:

.FOOTER/LEFT-TEXT///
.FOOTER@@CENTER-TEXT@@
.FOOTER/LEFT-TEXT//RIGHT-TEXT/
.FOOTER***RIGHT-TEXT*

.FROM i
The FROM command defines the page number of the first page in the processed output file
which you want to appear as processed output. This number is the page number as printed
by the § sign, not the sequential page number. The sequential page number is the total page
count, whereas you can reset the count at any time, to any value, using PAGEN. If i is zero,
or the command is not given, RUNOFF starts printing at page 1.
The FROM and TO commands are particularly useful when you want to examine a few
selected pages of processed output from a long file.

.HEADER /left-text/center-text/right-text/
The HEADER command sets up the header on all pages. Any character may be used as a
delimiter. The delimiters define the contents of the left, center and right portions of the
header; their presence is required even if there is no text in a given portion, as the following
examples demonstrate:

.HEADER/LEFT-TEXT// /
.HEADER@@CENTER-TEXT@@
.HEADER/LEFT-TEXT//RIGHT-TEXT/
.HEADER***RIGHT-TEXT*

▶ .HYPHEN character
The HYPHEN command defines RUNOFF's phantom hyphen character. The phantom
hyphen may be inserted between syllables of words within your source text to signal to
RUNOFF that it may, if necessary, hyphenate a word at this point. The default value for the
RUNOFF phantom hyphen is the rubout key (or its octal value of '377).
The phantom hyphen itself does not appear in the processed output in either case; for
example, if the word

antidisestab~3771ishment

1 M a r c h 1 9 8 0 1 0 - 6 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

r

would run over the right margin, RUNOFF would process the word as follows.

text text text text text antidisestab-
lishment text text text ...

But, if the word fits within the output line, RUNOFF processes it as:

text text antidistablishment text
text text text text

▶ .INDENT [m]
Indents the left margin m spaces to the right relative to the current left margin.
If m is 0, 5, or omitted, RUNOFF will indent 5. Negative values are not permitted; use
UNDENT to move the indentation back.

▶ .INDEX string
The INDEX command makes an entry into an index file defined by the IXFILE command.
The entire string, up to but not including the carriage-return, is written to the index file with
the current page number appended, (see .IXFILE). The .INDEX command should im
mediately follow the text containing the indexed phrase to insure that the proper page
number is used. If the .INDEX command immediately follows a page eject, the previous
page number is used.

▶ .INSERT filename [(symbol-0, symbol-l...,symbol-9)]
The INSERT command processes and inserts an external source file filename. This file may
contain both text and RUNOFF commands (including further INSERT commands). This
command is used to insert alternate files within the current input file(s). Inserts may be
nested up to 13 levels deep.
Defining symbol-values for INSERTed files: RUNOFF will automatically replace any
symbol-name in an INSERTed file with symbol-values defined either in the INSERTed file
or in the main source file.
If you know exactly what information you wish to pass along to an INSERTed file via
symbols, RUNOFF provides a way to list pre-named symbol-values within the INSERT
command. You may follow filename with a list of up to ten symbol-values separated by
commas. No symbol-value may be more than six characters in length, and the entire list must
be enclosed in parentheses. RUNOFF automatically assigns these ten symbol-values to the
names %0%, %2%,...%9, in corresponding order. Unassigned symbol-names have. NULL,
values. In other words, the command:

.insert MEMO (Jan05, 1934, Sales, 503, Stock, Report)

is equivalent to the commands:

.define 0 Jan05

.define 1 1984

.define 2 Sales

.define 3 503

.define 4 Stock
.define 5 Report
.define 6
.define 7

FDR 3104 1 0 - 7 1 M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

.define 8
.define 9
.insert MEMO

MEMO would then look like this:

D a t e : % 0 % % 1 %
T o : % 2 % D e p t f r % 3 %
S u b j e c t : % 4 I % 5 %

This then permits you to INSERT the same file several times using different parameter
values each time, as in:

.blank &
.insert MEMO (Jan05,1984,Sales,503,Stock,Report)
.insert MEMO (Feb08,1904,Pets,444,Studio,noisy)
.insert MEMO (Marl5,1984,Acctg,666,Stock,Report)

There is an additional format for the INSERT command:
.INSERT [unit] [(symbol-1, symbol-2, ... symbol-n)]

If filename is specified, that file will be opened, and input taken from it. If a unit number
unit is specified, that unit is assumed to be open, and the input is taken from it. If no name
or unit number is specified, RUNOFF assumes a unit has already been opened and the input
is taken from it. In command mode, this last option is equivalent to typing a null line to begin
processing. This command is useful in conjunction with the RETURN command.

▶ .IXFILE filename
The IXFILE command defines the name of an index file. If IXFILE is given, RUNOFF copies
all subsequent INDEX statements from the source file into filename with page numbers
appended. RUNOFF does not combine multiple entries or format the file; this must be done
via EDITOR.
If you do not specify IXFILE, and your RUNOFF source file contains one or more INDEX
entries, RUNOFF asks for the name of the index file:

INDEX FILE
You may then either specify filename, which becomes the index file, or enter a return. The
latter tells RUNOFF that you do not want an index or index file; RUNOFF ignores all
subsequent INDEX entries in the file. (This is equivalent to doing a NIXFILE.)
If filename already exists, RUNOFF asks if it is OK to delete the old file filename; if you
answer NO, RUNOFF then requests a new filename.
^ .KILL character
The KILL command re-defines the RUNOFF kill character which can only be used in
RUNOFF command mode. This command cannot be used in the source input file.
The default value of the RUNOFF kill character is the question mark (?). If you change this
via the KILL command, you cannot reset it back to the default value during the RUNOFF
session; however, PRIMOS automatically resets the KILL character value when you are
finished.

▶ .LENGTH [n]
The length command defines physical page length, including top and bottom margins, as n
lines. RUNOFF will recalculate placement of headers and footers. The LENGTH command

1 M a r c h 1 9 8 0 1 0 - 8 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

r

causes an implicit BREAK and EJECT. The default value of n is 66 lines. The maximum is
132. (At 6 lines = 1 inch, 66 lines = 11 inches.)

▶ . N A D J U S T
The NADJUST command stops RUNOFF from justifying the right margin of output text. If
you were in ADJUST mode, giving the NADJUST command is equivalent to saying FILL; if
you were already in FILL, NADJUST has no effect.

▶ .NEED n
The NEED command specifies that a block of n printing lines (actual lines of text, not page
lines) are needed for a body of text to follow.

▶ . N F I L E
The NFILE command tells RUNOFF that no output file is to be written.

▶ . N F I L L
The NFILL command tells RUNOFF to stop FILLing and ADJUSTing, and causes an implicit
BREAK. IN NFILL mode, the tab character is recognized. Wherever it appears NFILL takes
priority over any previous mode. NFILL mode is particularly useful for formatting tables.

▶ . N I X F I L E
The NIXFILE command tells RUNOFF that despite the inclusion of INDEX commands in
your RUNOFF source file, you do not want to generate an index file.

▶ . N PA R A G R A P H
The NPARAGRAPH command resets the paragraph values for their default of INDENT 0,
SKIP 1, NPARAGRAPH does not signal a new paragraph. It just resets these values.

▶ . N P A U S E
THE NPAUSE command turns off the between-page pause activated by the PAUSE
command. NPAUSE is the default.

▶ .NPERFORATE
The NPERFORATE command de-activates the perforation marks between pages, as ac
tivated by PERFORATE, and EJECTS to a new page.

▶ . N T T Y
The NTTY commands tells RUNOFF not to print processed output at the terminal. NTTY is
the default.

▶ .OFOOTER /left-text/center-text/right-text/
The OFOOTER command sets up the footer on odd-numbered pages. Any character may be
used as the delimiter. The delimiters define the contents of the left, center and right portions
of the Footer. Their presence is required even if there is no text in a given portion, as the
following examples demonstrate:

.OFOOTER/1eft-text///
,OFOOTER@(acenter-text@@
.OFOOTER/1 eft-text//right-text/
.OFOOTER***right-text*

F D R 3 1 0 4 1 0 - 9 1 M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

▶ .OHEADER /left-text/center-text/right-text/
The OHEADER command sets up the header on odd-numbered pages. Any character may be
used as a delimiter. The delimiters define the contents of the left, center and right portions
of the header; their presence is required even if there is no text in a given portion, as the
following examples demonstrate:

.OHEADER/left-text///

.OHEADER@@center-text@@

.OHEADER/lef t - text / / r ight- text /

.OHEADER***right-text*

▶ . PA G E N i
The PAGEN command specifies a new starting page number. The next page to begin after
this command will be numbered i. The number will be inserted wherever the § character is
used in a HEADER or FOOTER command. For example:

.pagen 5

.HEADER /text/text/Page j/

makes the next page have a header with "Page 5".

▶ .PARAGRAPH [m] [n]
The PARAGRAPH command signals the beginning of a new paragraph; RUNOFF does a
BREAK in the current output line, then indents the first line of a new paragraph m from the
current left margin after skipping n lines.
If you do not specify m or n, RUNOFF uses the most recently specified values. The default
values for m and n are INDENT 0, SKIP 1. The NPARAGRAPH command resets m and n to
these default values without actually starting a new paragraphing.
You can also signal a paragraph in FILL or ADJUST Modes by beginning an input line with
a space, or by including a blank line. This is known as implicit paragraphing.
The command PARAGRAPH 0 0 is equivalent to BREAK.
For information on "hanging indents" (negative indentation), see Section 8. Sample Sessions

^ .PAUSE < 'Jl

The PAUSE command causes RUNOFF to:
1. Pause when each new page of output is ready to be processed.
2. Ring the terminal bell.
3. Wait until a character is typed at the terminal before processing the new

page.

The PAUSE command permits you:
• On printing terminals, to print each page of RUNOFF output on a separate

piece of paper.
• On CRT terminals, to inspect the output file page by page. (You can also

use TERM -XOFF; see Section 4)
Although any character you type will start the printing output on the new page, you probably
want to type a non-printing character so you won't have to erase it later. The default is
NPAUSE.

1 M a r c h 1 9 8 0 1 0 - 1 0 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

r The value 1 — "read character from terminal" — is the default value when PAUSE is used.
0 causes RUNOFF to look in a command file for the character.

▶ .PERFORATE [n]
The PERFORATE command prints a line of hyphens as perforation marks between pages, on
the terminal and in the output file.
The command .PERFORATE 1 causes the perforation line to consist of only a hyphen at each
end of the line. A subsequent .PERFORATE (with no number) restores regular perforation.
The NPERFORATE command turns off the perforation marks.

▶ .PICTURE [n]
The PICTURE command reserves n physical page lines (6 lines=l inch) as opposed to
printing lines, for later insertion of an illustration. The rules are:

1. If n physical lines remain on the current page, these lines are skipped,
and if you're in FILL mode, the current line of output text is completed
before the skip occurs — i.e., a break does not occur.

2. If n lines do not remain on the page, RUNOFF continues to process the
output page, and then skips n lines beginning at the top of tfie next page
(o r c o l u m n) . \

3. If n is larger than the number of available lies (excluding top and bottom
margins) on a page, RUNOFF skips pages and lines until a total of n lines
have been skipped.

RUNOFF keeps track of up to ten PICTURE requests at a time, i.e., up to ten requests for
which space has not yet been skipped. RUNOFF attempts to satisfy each PICTURE request
as soon as possible, putting one PICTURE per page and filling the rest of each page with text.
If you specify more PICTURE requests while there are ten outstanding requests, the
additional requested space is added to that of the tenth PICTURE.

▶ . P U R G E
The PURGE command forces immediate satisfaction of all outstanding PICTURES and
FLOATS on the current (and all nested) FLOAT levels. This is necessary when you do not
want a nested FLOAT to extend beyond the end of a higher-level FLOAT.

▶ . Q U I T
The QUIT commands returns you from RUNOFF back to PRIMOS command level. If
RUNOFF finds a QUIT in the source file, the current page of output is EJECTed before
returning to PRIMOS.
Hitting the CONTROL-P (or Break) key on your terminal has exactly the same command as
the QUIT command in command mode. (In command mode it does not do an EJECT.) You
can restart RUNOFF by typing the START command, with or without a filename (i.e.,
START or START filename).
If you type QUIT while in RUNOFF command mode, you may lose the last page of processed
output.

▶ .RBAR [ON]
The RBAR command turns on and off a revision bar. A revision bar is a vertical line (or bar)
printed just to the left of the text, to indicate that the text has been changed since some
previous edition of the document.
The command RBAR ON turns on the revision bar. The bar appears on all subsequent lines
until the RBAR command appears again with any parameter value other than ON, or with

F D R 3 1 0 4 1 0 - 1 1 * M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

name — e.g., RBAR OFF, RBAR XXX, RBAR. In ADJUST mode, if the revision bar is turned
off in the middle of a line, the line is marked by a bar. RBAR ON does not put a revision bar
next to any blank line.
The command .RBAR ALL is the same as RBAR ON, except that it puts revision bars on
blank lines in the revised section.

▶ JRETURN [i]
The RETURN command returns you from an INSERT or FLOAT file to the previous input
file.
If i is zero or omitted, the current file is closed if it was actually opened by RUNOFF. If i =
1, the current file is left open. In all cases, return is to the previous input level. If a RETURN
is encountered in the primary input file, return is to command mode. If the value i = 1 is
used, typing a null line or INSERT with no parameter causes processing to continue in the
original file as if nothing had happened. This allows dynamic parameter changes during
processing from the TTY. If RETURN is used (i=0) to command mode, then resumption is
only possible if the file was not explicitly opened by RUNOFF. Otherwise, only INSERT
filename or INSERT i can be used to resume file processing from a new file. The
INSERT/RETURN combination is implemented using a file unit stack to insure proper
nesting of input files, down to 13 levels. RETURN always returns 1 level and INSERT always
goes down 1 level.

▶ .RINDENT [m]
The RINDENT command indents the right margin, by moving it m spaces to the left of the
current right margin. If m is 0 or omitted, the right margin is indented by the default value
of 5 spaces. The RUNDENT command resets the right margin.

▶ .RUNDENT [m]
The RUNDENT command resets (undents) the right margin, moving it m spaces to the right
of the current margin.
If m is zero or omitted, the right margin is reset to the original right margin as specified by
the SMARGIN command.

▶ .SKIP [n]
Skip n printing lines — i.e., times line spacing. (If double-spacing, skip 2n lines, etc.) SKIP
causes an implicit BREAK. If n is omitted, it defaults to 1.
RUNOFF will disregard a skip command as the first line of a new page since it has already
"skipped" a number of lines to get to the top of a page. To skip line as the first line of text
on a new page, use:

.blank &
&
.break

▶ .SMARGIN [m]
The SMARGIN command resets the current side margins (i.e.,left and right) to m spaces
from the edges of the page (as defined by WIDTH or its default value).
If m is 0 or omitted, the side margins are set to the default of 7 spaces. SMARGIN causes an
implicit BREAK and EJECT.

▶ .SOURCE [n]
The SOURCE command generates a list of line numbers one space to the right of the margin
of the output file, each number corresponding to a non-blank text line from the source input
file. Line numbers are four digits, enclosed in parentheses.

1 M a r c h 1 9 8 0 1 0 - 1 2 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

Each successive line number is n greater than the preceding number, if the value of n is 1
or omitted, the line numbers increase by 1; if n = 2, by 2, etc. If n = 0, the line numbering is
terminated. The SOURCE command may be given in the source input file or in RUNOFF
command mode.
Only source lines that generate output text are numbered; command lines, e.g., PARA,
WIDTH, etc., do not appear in processed output, nor are they numbered. If an input line
becomes several lines of processed text, only the first of these line is numbered.
If you have multi-column output, each column will have corresponding source line numbers.
For files put into your output via INSERT or FLOAT, source numbering restarts at 1 for the
duration of the external file; at the end of file line numbering this returns to the sequence
in use before the INSERT or FLOAT command.

▶ .SPACE [n]
The SPACE command sets the spacing mode for printing output lines, n = 1 is single spacing,
n = 2 is double spacing, etc. If n = 0, or is omitted, the default of single spacing is used. If n
is set to a value larger than the number of available lines (not including margins) per page,
only one line is printed per page (column).

The SPACE command does an implicit BREAK.

▶ .STOP
The STOP command is a conditional QUIT. If STOP is encountered in RUNOFF command
mode or in the source input file, it is treated as a QUIT. However, if encountered in an
inserted or floated file, it is treated as a .RETURN (with i = 0).
In all cases, an end-of-file (EOF) on an input file is treated exactly like a STOP command.

▶ .SYCHAR character
The SYCHAR command defines the specified character as the delimiter for symbol names
— i.e., these characters must enclose symbol-names in the source file. The default value of
the SYCHAR character is the percent [%).

▶ .TAB character tab-1 tab-2...tab-20
The TAB command defines the current tab character and stops (which are always relative
to the current left margin) for RUNOFF. The tab symbol is set by character, which can be
any character not currently defined by EDITOR or RUNOFF. (If the character has a special
meaning in EDITOR, it is processed when you input it, and never actually appears in the
source file.) There are no default tab stops.
The AT sign (@) is commonly used as the RUNOFF tab symbol.

1. Remember that the backslash -3 recognized as a tab symbol only by
EDITOR, and is converted to tab spaces immediately upon input-spaces
that RUNOFF will suppress in FILL or ADJUST mode.

2. In the TAB command, there must be a space between the command word,
the character, and each tab setting. If no character is specified, or no tab
stops specified, tabbing does not occur.

3. Tabs must be set in increasing order; otherwise you will receive the
message: ILLEGAL COMMAND.

In NFILL mode, you may use the tab symbol anywhere on a line, and it will be interpreted
correctly. However, in ADJUST and FILL modes, tab symbols are interpreted correctly only
if the input line starts with a TAB symbol.

F D R 3 1 0 4 1 0 - 1 3 1 M a r c h 1 9 8 0

10 THE RUNOFF REFERENCE SECTION

▶ .TMARGIN [n]
The TMARGIN command sets the top margin of the page to n lines from the top. The
placement of headers and footers is recalculated, if necessary. If the value of n is 0, 7, or
omitted, the top margin is reset to the default value of seven lines. The TMARGIN command
causes an implicit BREAK and EJECT.

▶ .TO i
The TO command defines the page number of the last page in the output file to be processed.
RUNOFF stops processing the source file as soon as page i is completed. The page number
is the number as printed by #, rather than the sequential page number. The sequential page
number is the total page count, whereas you can reset the § page count using PAGEN. The
symbol is replaced by the page number during processing, but RUNOFF knows a page
number even if there is no # on the page's format.

If the TO command is not given, RUNOFF processes the entire source file. The FROM and
TO commands are particularly useful when you only want to examine a few selected pages
of a long source file.
Although these commands are usually entered in RUNOFF command mode, they may be
located anywhere in the source file.

▶ .TOFC filename [limit]
Generates a table of contents in a file called filename. If limit is specified, only labels down
to that level are recorded in the contents file.

▶ . T O F C
Closes the current table of contents file.

▶ .TOFC 0
Turns off the generation of the table of contents file. (A .TOFC 1, turns it on again.)

▶ .TTOFC string
Enters string in table of contents file.

▶ . T T Y
The TTY command causes RUNOFF output to be printed at the user's terminal as well as
written to an output file (if specified).

▶ .UNDEFINE [symbol-name]
The UNDEFINE command removes symbol-name from the symbol table. If a symbol-name
is not specified, i.e., the command UNDEFINE is given by itself — the entire symbol table
is cleared.

▶ .UNDENT [m]
The UNDENT command undents — i.e., moves the current left margin — m spaces to the
left. If the value of m is zero or omitted, the left margin is reset to the original left margin
specified by the side margin command, SMARGIN (or its default value of 7 spaces, if not
explicitly given).

▶ .WIDOW [n]
The WIDOW command prevents you from having widows of up to n lines on your output
pages. A widow is one or more lines of text at the bottom of a page which are separated from

1 M a r c h 1 9 8 0 1 0 - 1 4 F D R 3 1 0 4

THE RUNOFF REFERENCE SECTION 10

the rest of the text by blank lines. The WIDOW command tells RUNOFF to check for widows
at the bottom of all subsequent pages. If RUNOFF sees a line skip within n + 1 lines of the
bottom margin, it does an EJECT after that skip. The default value for n is zero.

▶ .WIDTH [m]
The WIDTH command defines the physical page width, including both left and right margins
as m spaces. The default page width is 85 spaces; the maximum allowable in RUNOFF is 170
spaces. (At 10 spaces = 1 inch; 85 spaces = 8-1/2 inches; 170 spaces = 17 inches.) The WIDTH
command causes an implicit BREAK and EJECT.

F D R 3 1 0 4 1 0 - 1 5 1 M a r c h 1 9 8 0

Symbols,
etc.
\ EDITOR tab character 1-9,

3-18
" entering into EDITOR text 3-2

* RUNOFF page number 5-4.
10-10

% in RUNOFF 6-7
* comment in RUNOFF 5-8
* repeat EDITOR command 8-10
+ verbatim in RUNOFF 10-2
•NULL. 3-5
/ / / / apportion in RUNOFF 5-8
; entering into EDITOR text 3-14
> center text in RUNOFF 5-8,

10-2
? entering with EDITOR 3-2
? error 3-7

Acoustic coupler 2-3
Adding to the end of a line 3-12
ADJUST 10-2
ADJUST mode 5-6
APPEND 3-12, 3-6, 9-2
Apportioning text 5-8, 10-2
Artwork 6-6. 10-11
Asterisk constructions in
EDITOR 8-10, 9-14
Asterisk in RUNOFF 10-2
ATTACH 4-1. 4-3

B
Backlash \ 1-9
Backlash used for tab 3-18
BAD error 3-7
BLANK 10-2
BLANK character (RUNOFF)

6-7
Blank lines 5-9
Blocks of text 6-6
BMARGIN 6-3. 10-2
BOTTOM 3-9. 9-2
Bottom margin 6-3
Braces on Diablo printer 6-11
Braces { } 6-11
BREAK 5-9, 10-2
Break, implicit 5-9
BRIEF 9-2

Cancelling spooled files 4-6
Caret (A) 1-9

Centering text 5-8, 10-2
CHANGE 3-13. 9-3
Changing directories 4-1
Changing names of files and

sub-UFDs 4-8
Changing text 3-12
Character 1-7
Character parameters 3-3
CLOSE 4-8
Closing open files 4-8
CMARGIN 6-3, 10-2
CNAME 4-8
COLUMNS 6-4. 10-3
Columns of text 6-4
Comma 3-6
Command 1-5
Command format in EDITOR

3-2
Command parameters 3-2
Command words 1-6, 3-2
Commands in EDITOR 3-6
Comments in RUNOFF source

5-8, 10-2
CONTROL key 1-9
CONTROL-Q 4-5
CONTROL-S 4-5
Conventions in EDITOR 3-2
Conventions in examples 1-8
Copying files 4-9
CREATE 4-3
CTRL key 1-9
Curly-braces (\ 6-11

D
Data 1-4
DATE 4-8
Date symbols 6-9
DDOWN 7-8. 10-3
DDSUP 10-3
DDSUPPRESS 7-10
Decimalization 7-1
Decimalization command

summary 7-13
Decimalization levels 7-4
Default 1-5
Default values in EDITOR 3-2
Default values of parameters 1-6
DEFINE 6-8, 10-3
DEL key 1-9
DELETE 3-14, 4-8, 9-3
DELETE TO 9-3
Deleting files and sub-UFDs 4-8
Dialog 1-4
DINDENT 7-7. 10-3
Directories 2-5
Displaying files on terminal 4-5

Displaying RUNOFF output on
terminal 5-11

DLEVEL 7-9, 10-3
DLIMIT 7-13, 10-3
DNEXT 7-8, 10-3
DNSUP 10-3
DNSUPPRESS 7-10
Document formatting 8-1
Double quote (") 3-2
Double-spacing of lines 5-7
DRESET 7-9, 10-3
DSKIP 7-7. 10-4
DUNLOAD 9-4
DUNLOAD TO 9-4
DUP 7-8. 10-4

EDIT mode of EDITOR 3-3, 3-5,
3-6

Editing a new file 3-3
Editing an existing file 3-4
EDITOR commands, repetition

of 8-10
EDITOR:

basic commands 3-7
command format 3-2, 9-1
commands 3-6
conventions 3-2
error messages 3-7
line changing commands 3-12
tab character 3-18
tab stops 3-18
work file 3-3

EDLIN 8-15
EEVEN 10-4
EFOOTER 6-4, 10-4
EHEADER 6-4, 10-4
EJECT 5-11, 10-4
Eject, implicit 5-11
End of page 5-11
Entering text into EDITOR 3-3,

3-4
EODD 10-4
ER! 1-6
ERASE 9-4, 10-4
Erase character 2-1, 3-2
ERASE character (RUNOFF) 6-7
ERRGO 6-12. 10-5
Error messages 1-6
Error messages from EDITOR

3-7
Error messages, suppressing

6-12
Errors in RUNOFF 5-15
Even and odd pages 6-4, 10-4,

10-9
Examples 8-1
Examples, conventions in 1-8
Exiting EDITOR 3-15,3-16

1 March 1980 X - l FDR 3104

Figure insertion 6-6, 10-5, 10-11
File 1-4
FILE (in EDITOR) 3-16, 9-5
FILE (in RUNOFF) 6-5, 10-5
File directories 2-5
Filename 1-7
Filename parameters 3-3
Filenames, rules for 3-17
Files 2-5
Files:

deleting 4-8
renaming 4-8

FILL 10-5
FILL mode 5-6
FIND 3-11,9-5
FIND(n) 9-5
FLOAT 10-5
FOOTER 10-6
Footers 5-4, 6-4
Form letters 8-7
FROM 6-5, 10-6
FUTIL 4-9

GMODIFY 8-12, 9-5
Greater-than > 10-2

H
HALF-DUPLEX/FULL-DUPLEX

switch 1-9
Hanging indents 8-2
Hard-copy terminals 1-8, 4-5
HEADER 10-6
Headers 5-4, 6-4
HYPHEN 10-6
HYPHEN character (RUNOFF)

6-7

I
Illegal commands 5-15
Implicit break 5-9
Implicit eject 5-11
INDENT 6-3, 10-7
Indenting 8-2
Indenting for paragraphs 5-10
Indenting text 6-3
INDEX 6-11, 10-7
Indexing 6-11
Initial text period 6-9
INLIN 8-15
Input 1-4
INPUT 9-6
INPUT mode of EDITOR 3-3,

3-5, 3-6

INSERT 3-14, 10-7, 3-6, 8-2, 9-6
Inserting semicolons into text

3-14
Inserting text in RUNOFF 6-6
Insufficient access rights

(LOGIN) 2-4
Inter-column margin 6-3
IXFILE 6-11, 10-8

Justification of text 5-6
Keyboards 1-8
Keywords 1-8
KILL (in EDITOR) 9-6
KILL (in RUNOFF) 10-8
Kill character 2-2, 3-2
KILL character (RUNOFF) 6-7

Leaving EDITOR 3-15, 3-16
LENGTH 6-1, 10-8
Line numbers in EDITOR 3-6,

3-9
Line pointer 3-5
Line-formatting 5-6
LINE/LOCAL switch 1-9
Line/Local switch 2-2
Lineprinter 4-6
Lines in EDITOR 3-5
LINESZ 9-6
List files 2-5
LISTF 2-5, 4-2
LOAD 9-6
LOCATE 3-11, 9-7
Logging in 2-2, 2-3
Logging in, problems 2-4
Logging out 2-6
Login 1-4
LOGIN 2-2. 2-3
LOGIN PLEASE 2-4
Logout 1-4
LOGOUT 2-6
Looking at files 4-5

M
Making directories 4-3
Making sub-UFDs 4-3
Margins 5-4, 6-3
Messages 1-6
MODE:

CKPAR 9-7
COLUMN 9-7
COUNT 9-7
NCKPAR 9-7
NCOLUMN 9-7
NCOUNT 9-7
NNUMBER 9-7

NPROMPT 9-8
NUMBER 9-7
PRALL 9-8
PRLOWER 9-8
PROMPT 9-8
PRUPPER 9-8

Modem 2-3
MODIFY 9-8
MOVE 8-16, 9-9
Moving EDITOR'S pointer 3-9
Multi-section documents 8-1
Multiple columns 6-4

N
NADJUST 10-9
NEED 6-6, 10-9
Negative indentation 8-2
NERRGO 6-12
New page 5-11
NEXT 3-10, 9-9
NFILE 6-5, 10-9
NFILL 10-9
NFILL mode 5-6
NFIND 3-11,9-9
NFIND(n) 9-9
NIXFILE 6-11, 10-9
Not found (LOGIN) 2-4
NPARAGRAPH 10-9
NPAUSE 6-12, 10-9
NPERFORATE 6-12, 10-9
NTTY 10-9
Null lines 3-5
Null string 1-7
Numbered lines in RUNOFF

output 6-6
Numeric parameters 1-6

o
Odd and even pages 6-4, 10-4,

10-9
OFOOTER 6-4, 10-9
OHEADER 6-4, 10-10
ON/OFF switch 1-8
Open files, closing of 4-8
Output 1-5
OUTPUT 9-9
Output file 6-5
OVF.LAY 3-6, 9-10
Overwriting old files 3-17

P
Page:

end 5-11
formatting 5-4, 6-1
headers and footers 6-4
length 6-1
numbers 5-4

FDR 3104 X-2 1 March 1980

size 5-4
width 6-1

PAGEN 10-10
PAGEN character (RUNOFF)

6-7
Pages, range of output 6-5
Paper tape:

punching 9-11
reading 9-6

PARAGRAPH 5-10. 10-10
Paragraphing 5-9
Parameter 1-5
Parameters 1-6
Parameters:

default values 1-6
in EDITOR commands 3-2
numeric 1-6
text 1-6

Passwords 2-1, 4-2
Pathnames 4-4
PAUSE 6-11, 10-10, 9-10
Percent sign 6-7
PERFORATE 6-11, 10-11
Perforation marks 6-11
Period at beginning of line 6-9
PICTURE 6-6, 10-11
Plus sign + 10-2
POINT 3-10. 9-10
Pointer to current line 3-5
Pound sign - 5-4
PRIMOS 2-1
PRIMOS commands:

ATTACH 4-1.4-3
CLOSE 4-8
CNAME 4-8
CREATE 4-3
DATE 4-8
DELETE 4-8
FUTIL 4-9
LISTF 2-5. 4-2
SLIST 4-5
SORT 4-8
SPOOL 4-5
TERM 4-9
TERM-NOXOFF 4-6
TERM-XOFF 4-5

PRINT 3-8. 9-10
Printing files 4-5
Printing files on lineprinter 4-6
Processing selected pages only

6-5
PSYMBOL 9-10
PTABSET 9-11
PUNCH 9-11
PURGE 10-11

Q, R
Question mark 1-6, 3-2
Question-mark error 3-7

QUIT 3-15, 10-11, 9-11
Ragged right text 5-6
RBAR 10-11
Reminders 1-6
Removing files 4-8
Renaming files and sub-UFDs

4-8
Repeat 9-14
Repetition of EDITOR commands

8-10
Requested information 1-5
RETURN (in RUNOFF) 10-12
RETURN key 2-2
RETURN key in EDITOR 3-5
RETYPE 3-15,3-6,9-11
Revision bars 10-11
Right-justified text 5-6
RINDENT 6-3, 10-12
Rubout key 1-9
Rules for filenames 3-17
RUNDENT 6-3, 10-12
RUNOFF 5-1
RUNOFF command format 5-2
RUNOFF:

conventions 6-7
date symbols 6-9
erase character 6-7
errors 5-15
footers 5-4
headers 5-4
illegal commands 5-15
indentation commands 6-3
indexing commands 6-11
kill character 6-7
line-formatting 5-6
margins 5-4, 6-3
numbered lines in output 6-6
output file 6-5
output options 6-4
output to terminal 5-11
page numbers 5-4
page size 5-4
page-formatting 5-4, 6-1
spacing between lines 5-7
special characters 6-7
summary of use 5-3, 5-14
symbols 6-7
underlining 6-9
unrecognized commands 5-15

Saving edited text 3-16
Searching for particular text

3-11
Semicolon 3-4, 3-5. 3-6
Semicolons, inserting into text

3-14
Session 1-4
Side margins 6-3
Single sheet RUNOFF output

6-11

Single-spacing of lines 5-7
SKIP 5-9, 10-12
Skipping lines 5-9
Slash / 10-2
SLIST 4-5
SMARGIN 6-3, 10-12
SORT 4-8
Sorting files 4-8
SOURCE 6-6, 10-12
SPACE 5-7, 10-13
Space for artwork 6-6
Spacing between lines 5-7
Special characters, entering

3-18
SPOOL 4-5
Spool queue, cancelling files

from 4-6
Spool queue, inspecting 4-6
STOP 10-13
String 1-4, 1-7
String buffers 8-15
String, null 1-7
Sub-UFD:

changing to another 4-3
deleting 4-8
making 4-3
renaming 4-8

Suppressing RUNOFF error
messages 6-12

Switches:
HALF-DUPLEX/FULL-

DUPLEX 1-9
LINE/LOCAL 1-9
ON/OFF 1-8
UPPER-CASE/LOWER

CASE 1-9
Switching between EDIT and

INPUT modes 3-5. 3-6
SYCHAR 10-13
SYCHAR character (RUNOFF)

6-7
SYMBOL (EDITOR) 9-11
Symbols 8-1
Symbols in RUNOFF 6-8
System Administrator 2-1

TAB 10-13
TAB character (RUNOFF) 6-7
Table of contents 7-11
Tabs in EDITOR 3-18
Tabs in RUNOFF 5-7
TABSET 9-13
Telephone line 2-3
TERM 4-9
TERM-NOXOFF 4-6
TERM-XOFF 4-5
Terminal 1-4

1 March 1980 X-3 FDR 3104

Terminal controls 1-8
Terminal switches 1-8
Terminal, use of 2-2
Terminals 1-8
Terminals:

hard-copy 1-8
keyboards 1-8
upper-case only 9-8
video 1-8

Text parameters 1-6, 1-7
Text string 1-4
Text string parameters 3-3
TMARGIN 6-3, 10-14
TO 6-5, 10-14
TOFC 7-11, 10-14
TOFC 0 10-14
TOP 3-9, 9-13
Top margin 6-3
Triple-spacing of lines 5-7
TTOFC 7-13, 10-14
TTY 5-11, 10-14
Two-column text 6-4
Typographical conventions l-{

LIFD 2-1. 2-5
LIFD, changing to another 4-1
UNDEFINE 10-14
UNDENT 6-3. 10-14
Underlining 6-9
UNLOAD 9-13
UNLOAD TO 9-13
Unrecognized commands 5-15
Up-arrow (A) 1-9
Up-arrow character 3-18
UPPER-CASE/LOWER-CASE

switch 1-9
User File Directory (UFD) 2-1,

2-5

Variables, see symbols
Verbatim text 10-2
VERIFY 9-13
Vertical lines 10-11
Video terminals 1-8
Viewing files 4-5

W, X, Y, Z
WHERE 3-9. 9-14
WIDOW 6-6, 10-14
Widow prevention 6-6
WIDTH 6-1, 10-15
Working directory 4-1
XEQ 8-16, 9-14
XOFF 4-5
XON 4-5

FDR 3104 X-4 1 March 1980

Prime Technical Publications:

C

f T
&

Unique services,
and an invitation for

you to participate.

PRIME
Computer

w > x

r ^

AIDUS
Automatic updates and the fastest method of ordering
documentation from Prime

AIDUS, the Automatic Individual Update
Service, is a unique and valuable service for
Prime users. Through automatic updates
for Final Documentation Release (FDR)
manuals, it assures you of timely informa
tion on all Prime product enhancements
and software revisions. It also provides the
fastest method of ordering documentation
from Prime.
When Prime revises its software, AIDUS
documents these revisions in the form of
change sheets that let you easily replace
non-current information with new pages.
Change sheets encompass corrections,
enhancements, and differences between a
new release of Prime software and its pre
decessor. To highlight changes, they have
notations in the margins that indicate
any applicable software revision numbers.
If we revise a book instead of producing
change sheets you're covered—we'll send
you the new book. In this way, your FDRs
remain current and complete.
AIDUS also covers Programmer's Com
panions™, the condensed technical summa
ries produced in pocket-size format for
easy reference. These are updated by com
plete reprints, not by change sheets. Each
time Programmer's Companion is revised
and reprinted, you will be sent a fresh copy
as part of the AIDUS service.
The price for this three-year service is only
$15.00 for each FDR and $5.00 for each
Programmer's Companion. (Please note
these prices apply only to the United
States. Outside the United States consult
your local sales office.) Quantity discounts
are available, based on the total number of
AIDUS packages ordered. This means you

can have the convenience of individual
service and the savings of having a coordi
nator distribute updates to several users.
You can also use the AIDUS order form to
get the fastest service when ordering doc
umentation from Prime, even if you don't
order AIDUS. You'll benefit from our ag
gressive quantity discount schedule which
affords up to a 3096 discount when 101 or
more documents are ordered at the same
time. Qualified non-profit educational
institutions are eligible for a straight 50%
discount on all orders for AIDUS and
currently listed documentation.
For more information and an AIDUS order
form, check the box at the bottom of the
User Survey.

PRIME SOFTWARE DOCUMENTATION SUMMARY

BASIC
INTERPRETIVE
ASSEMBLY
LANGUAGE

TEXT
PROCESSING/
EDITOR

COMMUNICATIONS

STATISTICS
SYSTEM
INSTALLATION

Tit le
The FORTRAN Reference Guide

Perfect-bound edition
Loose-leaf edition

The FORTRAN Programmer's Companion

The FORTRAN 77 Reference Guide
The COBOL Reference Guide

Perfect-bound edition
Loose-leaf edition

The PL/I Subset G Reference Guide
The RPGII Programmer's Guide

Technical update
The RPGII Debugging Template
The BASIC/VM Programmer's Guide

Perfect-bound edition
Loose-leaf edition

The BASIC/VM Programmer's Companion
The Interpretive BASIC Programmer's Guide

The Assembly Language Programmer's Guide
Perfect-bound edition
Loose-leaf edition
Correction sheet updates

The Assembly Language Programmer's Companion
The System Architecture Reference Guide
The PRIMOS Commands Reference Guide

Perfect-bound edition
Loose-leaf edition

The PRIMOS Programmer's Companion
The Prime User's Guide
The System Administrator's Guide
The System Administrator's Programmer's Companion
PRIMOS Subroutines Reference Guide
LOAD and SEG Reference Guide

Technical update
The Source Level Debugger Guide

The New User's Guide to EDITOR and RUNOFF
Perfect-bound edition
Loose-leaf edition

DBMS Administrator's Guide
DBMS Schema Reference Guide
DBMS FORTRAN Reference Guide
DBMS COBOL Reference Guide
The PRIME/POWER Guide
The MIDAS Reference Guide

Technical update
The FORMS Programmer's Guide

Technical update

The PRIMENET Guide
Technical update

The Distributed Processing Terminal Executive Guide
The Remote Job Entry Guide

The SPSS Programmer's Guide
The Svstem Installer's Guide

Doc. Number Rev.

FDR3057-101A 17
FDR3057-101B 17
FDR3338 17
1DR4029 17

FDR3056-101A 17
FDR3056-101B 17
IDR4031 17

PDR3031 16
PTU2600-066 17
FDR3275 16

FDR3058-101A 17
FDR3058-101B 17
FDR3341 16

IDR1813 16

FDR3059-101A 16
FDR3059-101B 16
COR3059-001 17
FDR3340 16
PDR3060 N/A

FDR3108-101A 17
FDR3108-101B 17
FDR3250 16
IDR4130 17
PDR3109 17
FDR3622 16
PDR3621 17
IDR3524 16
PTU2600-064 17
IDR4033 17

FDR3104-101A
FDR3104-101B

PDR3276
PDR3044
PDR3045
PDR3046
IDR3709
IDR3061
PTU2600-062
PDR3040
PTU2600-061

IDR3710
PTU2600-065
IDR4035
IDR4036
PDR3173
PDR3105

17
17

16
16
16
16
16
16
17
16
17

16
17
17
17
16

N7A

Help us find out how we're doing and we'll send you a free
Programmer's Companion

Because we're a user-oriented organiza
tion we need your ideas and comments. To
obtain this information we developed the
Technical Publications User Survey. It's an
easy-to-fill-out questionnaire that deals
with all phases of our technical publi
cations effort. Your answers will help us
plan better and more effective publications
to meet your needs.
The first part of the survey deals with our
publications in general. We need to know a
little bit about you, what you do and how
much experience with Prime you've had
so that we can interpret your comments
better. The second part asks questions
about a specific book. You may choose to
review any Prime document on our Current
Documentation Summary.
As a token of our thanks for completing
this survey, we'd like to send you a comple
mentary copy of the Programmer's Com
panion of your choice. Check the box indi
cating your choice at the bottom of the
survey form.

^ The Technical Publications User Survey
Part One

Your name.

Company or School
Address

City, State, Zip

1. What is your job title or function?.

2. What specific task describes what you do?
(i.e., Systems Programmer, Data Entry Clerk, etc.

3. Does your company/school/organization now own a Prime Computer? □ Yes □ No
If YES, what model?
a. How long have you been using it?.
b. Is it networked with other Prime Computers? □ Yes □ No
c. Is it networked with other non-Prime computers? □ Yes □ No

Which ones?
d. Which of the following software packages do you use?

□ FORTRAN □ COBOL □ BASIC/VM
□ FORTRAN 77 D PL/I-G □ POWER
□ M I D A S □ D B M S □ S P S S
□ RPG II □ FORMS
□ PRIMENET
□ Remote Job entry (which)

e. Have you previously read any of Prime's documentation? □ Yes □ No
If YES, what title(s)?

4. Are you presently evaluating Prime Computers? □ Yes □ No
If YES, are you using the documentation as part of the evaluation process?
□ Yes □ No

Part Two
What book are you reviewing? FDR 3104

1. My initial reaction to this book was:
□ Excellent D Very Good □ Good □ Fair □ Poor

2. After reading it, my reaction was: □ Better □ The Same □ Worse
If either BETTER or WORSE, why?

5. Did the organization of the material aid you in locating topics of
interest? □ Yes □ No
If NO, what about the organization was a problem?

3. How much have you used this book? □ Just Got It
□ A Little □ Fairly Often □ Very Often □ Every Day

4. Did the book have the content you expected it to have? □ Yes □ No
If NO, what would you add or delete?

6. Were there too many or too few examples?
□ Too Many □ Too Few □ About Right

7. Were there too many or too few illustrations?
□ Too Many □ Too Few D About Right

8. Could you locate the information you needed? □ Yes □ No
9. Did you use the index? □ Yes □ No

10. Was the index adequate? □ Yes □ No
11. Please give us some feedback on the writing style and editorial qualtity:

a. Clarity □ Hard To Understand □ Average □ Very Clear
b. Tone □ Stilted D Neutral D Friendly □ Patronizing
c. Technical Level □ Oversimplified □ About Right □ Too Technical
d. General Writing Quality □ Poor □ Average D Good □ Excellent
e. Editorial Quality (Typos, misspellings, etc.)
□ Poor □ Average □ Good D Excellent

12. Have you used documentation from other computer manufacturers? □ Yes □ No
Which manufacturer?
How good is Primes compared to theirs?
□ Much Worse □ Worse □ Same □ Little Better □ Much Better

13. If the book you are reviewing is either an FDR or a Programmer's Companion, please
answer the following:
a. Did you like the general presentation? □ Yes □ No
b. Do you like the color paper the book is printed on? □ Yes □ No

If NO, what would you change?

c. Do you like the way we used the color and graphics throughout? □ Yes D No
If NO, what would you change?

d. Do you think that showing abbreviations and user input in a second color
is effective? □ Yes □ No

e. Did the screens over the tables and charts make it EASIER or HARDER to
read? □ Easier □ Harder

f. Do you like the Programmer's Companion concept? □ Yes □ No
If NO, what would you change?

g. Which form of bindery do you find most useful? □ Loose-Leaf □ Bound
h. Do you know anything about the AIDUS update program? □ Yes □ No

Any additional comments or suggestions you might have:

Thank you for filling out our User Survey. Check off which Programmer's Compan
ion you'd like to receive as a token of our appreciation.
□ PRIMOS D FORTRAN □ BASIC/VM □ Assembly Language
□ Svstem Administrator □ COBOL □ Power
□ Send me information on the AIDUS program.

a.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES
FIRST CLASS PERMIT NO. 531 WELLESLEY HILLS, MA 02181

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME Computer
Attention: Technical Publications Bldg. 10B
40 Walnut St., Wellesley Hills, MA 02181

* *

	Front Cover
	Flyleaf
	i
	Copyright
	ii
	Title Page
	iii
	Contents
	iv
	v
	vi
	vii
	viii
	ix
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	Chapter 2
	Using PRIMOS
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	Chapter 3
	The Essentials of EDITOR
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	Chaper 4
	More PRIMOS
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	Chapter 5
	The Essentials of RUNOFF
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	Chapter 6
	More RUNOFF
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Chapter 7
	RUNOFF Decimalization
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	Chapter 8
	Sample Sessions
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	Chapter 9
	The EDITOR Reference Section
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	Chapter 10
	The RUNOFF Reference Section
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	Index
	X-1
	X-2
	X-3
	X-4
	Brochure-1
	Brochure-2
	Brochure-3
	Brochure-4
	Survey-1
	Survey-2
	Survey-3
	Survey-4

